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ABSTRACT

The well-known Verhulst-Pearl model in ecology, N'=(1-65-N(¢))-N(¢)
where N(t) denotes current population size, has a solution which may be
written in the form of a logistic cumulative distribution function (cdf). It is
widely used to describe population growth curves (Renshaw, 1991). An
alternative model N'=(A—-0-F(t)): N(t) where F(t) is the integral of N(s)
from 0 to t, was recently proposed by Kindlmann (1985) and solved analytically
by Prajneshu (1998). The solution to this model was written in the form of a
logistic probability density function (pdf) by Matis ez al. (2009). The model has
been previously fitted only to aphid data. We illustrate this pdf solution by
fitting it to data on the gypsy moth (Lymantria dispar), a harmful insect which
defoliates forests, from Latakia, Syria. The logistic pdf solution fits this gypsy
moth data very well, which provides a mechanism for the statistical analysis of
moth count data. Consequently, effective control strategies for gypsy moths can
be developed with the objective of avoiding forest defoliation in Latakia. This
successful fitting also suggests investigations using the model to describe
population growth curves of other insect species.

Keywords: Logistic Growth Model, Cumulative Growth Model,
Logistic Probability Density Function, Gypsy Moth.



Matis, Al-Muhammed- Theory and Application of the Logistic Probability Density...

bty e sl Alaial) el dlla 4 ks
el ST Ciia ol 73 galS

P saaal puls sana 5 Vputla 50 Guasn

48 5aY) Baniall il oY — (a3 A&M dasly — slaa) and (V)
A s — (Bad el — o glal) 48— cilydaly ) @)

2009/09/15 1) s i

2010/03/29 b sl J@

uadtal
ald (8 . cladiaal) gai chua gl aadiad Al g dpdly ) G (A ua gl galll g i
Al 13a Lgd oS alla B Lghla B 909 &l pdial) ciladine ALSS Ciua ol g 3lall) oda aadiu
(e alie ) 232l (i) "carrying capacity clafiad) 80" et 03155 dad flug dajhiaa
o daga il (lua sll) g agaill gy (Lo Aliad (8 Al (Sl (8 laa (o O Sy (A il pial)
AadlSe ilory gpand o crag cdosla Aliad A B il aang 00 B e s (B Colebal
Lllad cpa af ) Ao clill) g Jraalaal) (e Adlida Lo gl jand AN il pdiad) oda o sLiadl Allad
S} (e 0B o zilalll oda aaailly Lgn s Led O claainall gai cua g (8 Ll 5ll) 7 3all
ABadlally 3 s Asale dnanl Lgd ¢y oSy 28 BILAY addl) o2 g pdinal) gai B Balinall & g BILAL) Al
Ao oll) A dlaial) AU 4018 ;o ay AT Sluca ol g gmal £ 80 gl 22 o il
¢ g aaiony 40 ¢S Al e Jadi 3 galll 138 Logistic probability density function
ABlaS apaal) s sl zhgadll (gob aaiaall goad 8 Baliaal) o g BILEY anll) croidal g S g
Lo 530 Jmalaall 1 jpans ol pdiad) H3S) (ha Ban) g 3 pdial) 038 303, Aphid pamsd 5 pda SIS Cia gl
) S i gl Alpadat 2y ad apaal) 3 gall) 138 (819 A gen Lo Lay allad) sladf S 3 8 pdiia (A
AaiaY) 73 gail) bl i g8 D AV B all g Erad) 138 3l S (a ) ) a SAT £ g
Tomass JASY) 3 pdal) o jadll Lo | jadl) Lo :en dyjsm B cipdall g Al g g o uagll
Sl g ) (255 a5 Crag LgBl gl e Y bty p 985 1) Ay jge (B g o allal) (5 glnall o
Ay LB, Gaal) 13gd Lalal) cilalgaad) (il (e i) jaadiy
apaailly g &l pdal) (e JAT £ sl Ao e gll) Maial) 3 gall) (Bl g 58 oy AV B 0all L1
oA & e
L g (o2 ) pdial) pina LSS s gl A sl Alaia¥) 3 gl Gl g AV Bl 2
AT Ay g (B A1 B sall g LSS LgdY T dagea dalgu) o2 i (Ladd) Lo yaaiilly)
said) Lo (LiL) Namil laa) Julad o) oY (han slll Aaia¥) 73 gaill) dyilas) dulyy 441
Liadlsa g 5 lall A3Y) oda Jasal Allad (3l ha yaaand Al (e g
Aallainy) A8 A ¢ a8 i sai 23 sad i ol gaill 23 e tAgalifal) cilaldl

10



Damascus University Journal for BASIC SCIENCES Vol. 26, No 1, 2010

Introduction

Logistic cumulative growth models are well-known for describing
population growth in ecology. Specifically, they are widely used to
describe insect populations and their life cycles in cases where the
population increases monotonically to some equilibrium value, called
the ‘carrying capacity.” This provides people working in plant
protection with powerful techniques to predict insect counts and
therefore to prepare effective control strategies to deal with problems
caused by harmful insects on different types of crops. Although it has
a remarkable descriptive power, this model has shortcomings.
Namely, the logistic cumulative distribution function (edf) model is
not sensitive to outlying or unusual observations, which may be of
scientific interest.

A newly proposed model is the logistic probability density function
(or the logistic pdf for short). The model describes a common type of
growth curve in which a population rises to some maximum value and
then declines rapidly. The logistic pdf model has been successfully
used previously to describe aphid populations. The aphid family is the
leading agricultural pest in the world, and it is also a problem in
Syria. However, the logistic pdf has never before been applied to
other species. This paper shows a new successful application of the
logistic pdf model to describe another insect, namely the gypsy moth
(Lymantria dispar). The gypsy moth is the most destructive insect in
forests worldwide, and it also defoliates forests in Latakia area,
Syria.

To this end, the contribution of this paper is twofold. First, it
shows, for the first time, the application of the logistic pdf to an insect
species other than the recent applications to aphids. Second, it is the
first time that the logistic pdf model is used to describe an insect
population in Syria. The latter contribution is very important because
it provides a mechanism (the logistic pdf model) for analyzing gypsy
moth count data and preparing a foundation for effective control
strategies to deal with this insect.

We present our contributions as follows. Section 2 briefly presents
the logistic cdf model. Section 3 introduces the new logistic pdf model
and gives some of its useful properties. Section 4 demonstrates the
application of logistic pdf model to gypsy moth data from Latakia
area, Syria. Section 5 concludes the paper and gives directions for
future work.
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The Standard Logistic Growth Model

The logistic growth curve has a celebrated history, and is still in
widespread use today in ecological theory as well as in math
education (Renshaw, 1991). This curve was first suggested by
Verhulst in 1838, and derived independently by Pearl and Reed in
1920. Let N (t) denote population size at time t, and N’(t) its
derivative. The Verhulst-Pearl model is

= AN-(1-
N'@=AN-(1=2) (1)

with parameters A>0 and K>N(0). The simple solution to (1) may
be written as

K
1 + e(c—/lt) (2)

The parameter c is related to the initial value N(0). Parameters A,
called the ‘intrinsic growth rate’, and K, called the ‘carrying capacity’,
are key descriptors of population dynamics in ecology (Renshaw,
1991). For subsequent convenience, we rewrite (2) as

K
NO =y 3)

with new parameter f,,, =c/A.

Equations (2) and (3) with K = 1 have the form of a cumulative
distribution function, or ‘cdf’, in statistics, as they are positive
functions with N (-0) = 0 and N (e0) = 1. This is curious, as the
previous derivation has nothing to do with a random variable, but is
instead the solution to a differential equation with no randomness.
This distribution is called the logistic cdf in statistics. The fact that (2)
and (3) have the form of a logistic cdf is very helpful, as many
properties of the logistic cdf are well-known in statistics. Due to this
correspondence, we call the previous logistic growth model in (2) and
(3) the logistic cdf model.

The Verhulst-Pearl model in (1) is often reparameterized as

N'(6) = (A= SN(1)-N(0) )

where 6= M K. In a simple mechanistic interpretation of model (4),
intrinsic growth rate A is interpreted as the per capita birth rate of the
population. The corresponding per capita death rate is 0N, where d is
a death rate coefficient. The model is called ‘density dependent’, as

N@) =
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the death rate is a function of current size, N. There are numerous
generalizations of models (1) and (4). One in common usage is the
“power-law” logistic in which N (t) in (4) is raised to a power (Banks,
1994).

The New Logistic Growth Model, the Logistic pdf

We consider now the derivation of this different logistic model. Its
mechanistic formulation was first proposed in mathematical terms by
Kindlmann (1985) to describe insect populations, and is given as
follows:

N'(t)=(A-0F () N(2) (%)
where

F(t) = jN(s) ds (0)

F(t) denotes the past population size, or ‘cumulative density’, since
the initial time (¢ = 0). In simple terms, model (5) changes the per
capita death rate in (4) from & N (t) to 0 F (t). Prajneshu (1998)
derived the first analytical solution to the differential equation in (5), a
nontrivial feat, in the form:

ae—bt

(vde ™y @

where a, b, and d are positive parameters. Matis et al. (2007)
shows that the solution to (5) can also be written using stable
parameters, which simplify fitting the model to data, as:

AN o) (8)

(1 + e—b(t—fmax ) )2

The parameters in this model are naturally interpretable, as
parameter N, denotes the maximum size of N (t) in (8) and #,,, the
time of this maximum. Parameter b is a relative rate defined
subsequently. The biological meaning of the parameters in equation
(8) facilitates the choice of initial parameters in iterative nonlinear
estimation procedures. Of course, they also make it more user-friendly
for biological investigators.

Some useful facts about model (8) follow:

1. This solution may be written more parsimoniously using the
hyberbolic secant (sech) function as

13
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N(t)= N, -sech’ (wj 9)

Hyperbolic functions are defined in calculus courses, but seldom
used in practice. A novelty about (9) is that we will later fit “real-
world” data to this squared hyperbolic function.

2. Once the observed data are fitted to model (8), the estimates of
Nuaxs tmax» and b may be used to estimate the parameters of underlying
model (5). We show in Matis et al. (2007) that

i:bﬂ
d+1

2 (10)
B 2Nmax
_4d-N,

max

N (1+d)

Where:
— bmax
d - e ! (11)

Parameter d is typically very large, hence it follows from (10) that
parameter b is an accurate approximation for the per capita birth rate A.
3. Itis also clear that solution (8) could be written as
N(@) =K p(1) (12)
where p(t) is the logistic probability density function, or ‘pdf’,
defined as
b e P )

(1 + e*b(t*tmax))Z
and K is the constant
K=4N,, /b (14)
One can show that K is the total area under the N (t) curve, also
denoted as AUC, by integrating (12) over the full range of t, noting
that p (t) is a pdf integrating to 1. The AUC is an important descriptor

in ecology. The logistic pdf (also called the sech-squared pdf due to
(9)) is also well-known in statistics. It is symmetric with heavier tails

p()= (13)
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than a Normal pdf with the same mean and variance (Johnson and
Kotz, 1970).

We call new model (8) the logistic pdf model, due to (12). It seems
curious again that mechanistic model (8) also, which is devoid of any
randomness, would have as its solution a scaled form of a well-known
probability distribution in statistics. We note, however, that one can
formulate a stochastic analog to model (5), in which the current count
N(t) is a random variable. As a contrast to ‘deterministic’ model (8),
which is the solution to a single differential equation, Matis et al.
(2005) presents an example of an ‘exact’ solution to a stochastic
analog of (5). This ‘exact’ solution is based on solving a system of
over 180,000 (Kolmogorov) differential equations.

Application of the New Logistic

pdf Model to Gypsy Moth Data

Both Kindlmann, the Czech ecologist who first formulated (5), and
Prajneshu, the Indian mathematician who obtained solution (7), sought
specifically to describe aphid population growth. Theoretical reasons
why the aphid family satisfies the mechanistic assumptions in (5) are
reviewed in Matis et al. (2007). This model formulation has also been
verified empirically by fitting model (8) successfully to a number of
aphid species, as reviewed in Matis et al. (2009). These past studies
demonstrate the versatility of the model to describe observed aphid
abundance curves, whether the peak count is high or low, the spread
narrow or wide, or the time of maximum short or long.

To our knowledge, however, model (8) has never before been fitted
in a published study to a species other than the aphid. Yet it would not
be surprising if this versatile logistic pdf fitted successfully population
size data from other species as well, even though their population
dynamics might be completely different from those applicable to the
aphid in model (8).

We illustrate the logistic pdf and at the same time explore the
hypothesis that it might fit other insect species using gypsy moth data
(Al alouni, 2009). Gypsy moths defoliate forests in Syria, and studies
are conducted to control them. The observed data are given in Table 1
and are illustrated graphically in Figure 1 as small solid circles. The
data consist of the average number of gypsy moths, denoted Y (t),
caught in four pheromone traps over time ¢ (in days) near Latakia (in
Slunfeh).
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Table 1: Average Moth Counts

Elapsed Time (days) Count
0 0.4
6 10.6
11 101.2
19 467.6
26 756.8
33 309.6
40 18.4
47 24.5
55 9.6
62 4.8
68 2
74 0.8
78 0
800
700
= B0
S 500
C 400
% 300 ===Fitted Model
; 20K @ NothCount
100 -
[u] L ]

0 6 11 19 26 33 40 47 55 62 68 /4 78

Time (days)
Figure 1: Illustration of Logistic pdf Curve for Moth Data

We illustrate fitting this data set using standard nonlinear least
squares (Neter ef al., 1996; ), as implemented in SPSS (2007). With
Y (t) representing the observed population size, we assume regression
model:

Y(t)=N(t)+¢ (15)

where € denotes an independent random error term. The parameters

in (8), with their standard errors in parentheses, are N, = 778.5
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(16.4) moths, t,, = 24.76 (0.15) days, and b = 0.2576 (0.0067)/days.
The resulting fitted curve is

Y(t) = (4)-(778.5)- e 0387249 (16)
(1 + e—0.258(t—24,8) )2

which is illustrated also in Figure 1 as a smooth curve. This curve
fits the moth data remarkably well.

Though a well-fitting curve is always prized for publication
purposes, the fitted curve alone is not sufficient for subsequent
statistical analysis. The curve is useful primarily for providing
parameter estimates. The parameter estimates provide response
variables, which might be used in ecological studies to detect and
describe the impact of environmental factors on observed abundance
curves. For example, we have shown in Matis et al. (2008) using data
from a designed experiment that such response variables are helpful in
explaining the effects of nitrogen and of irrigation treatments on
cotton aphid abundance.

We expect that the model will be useful in the same way in relating
environmental effects to moth abundance in Syria, which will be a
useful part of any control strategy. More specifically, the data in
Figure 1 come from one of four sites of varying elevation and forest
composition in Al alouni (2009). One approach for analyzing these
data is to relate model parameters from a site to its environmental
factors. For example, letting Z; denote a general response variable,
useful response variables from the moth data in Figure 1 include:

1. Z1 = Nuax, which estimates the peak count, is of paramount interest
to ecologists as a measure of maximum infestation. In this example,
recall N,,.= 778.5 moths.

2. Z» = tyax , which is of interest as a time to maturity for the moth in
its life cycle at the site. In the present example, ., = 24.76 days
from the date when observations started (May 25, 2008).

3. Z3 = b, which in the moth context may be interpreted as an initial
per capita ‘emergence’ rate in the life cycle of the moth. This is b =
0.2576/day for these data.

4. Z4 = o, which in the moth context is a population dechne
coefficient. For this example usmg (10), one has & = (0.2576)* /
1557 = 4.26 10” (moth- days )y

5. Zs= K, which to an ecologist is the ‘total cumulative density’, and
is used as a measure of the total environmental impact of the moth
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infestation on its available resources. In this example, K =
3114/0.2576 = 12088 moth-days.

6. Z¢ = o, which is the standard deviation of the logistic pdf. The
standard deviation of the logistic is, from Johnson and Kotz (1970):

s
o=—— (17)
b3
For the present example this gives ¢ =/ (0.2576* NE) ) =7.04 days.
We use 4* o as a measure of the duration of substantial moth
infestation. Hence the duration of infestation for these data is
estimated to be 28.2 days.

Each of these variables defines some naturally interpretable
characteristic of a growth curve, and each is useful in describing
environmental effects. An experimenter might be able to obtain some
reasonably accurate, subjective estimate of N, and t,, without a
model such as (8). Accurate estimates of b, d, K, and o, however,
would be very difficult to obtain without such a model.

These response variables could be calculated for the other sites as
well, to determine statistically whether specific environmental factors
are correlated with one or more of the Z; to Zg variables. As an
illustration, published studies have shown that moth abundance in
North America is related to elevation and to forest composition
(Sharov et al., 1997). Studies are currently in progress to determine,
for example, whether the above population measures for the gypsy
moth in Syria are related to elevation and to the proportion of oak
trees in a forest. We expect that such studies will lead to abundance
predictions, and hopefully ultimately to moth control strategies.

Conclusions

The paper shows that the logistic pdf model may be used to
describe the population size of insects other than aphids. This fact is
demonstrated, for the first time in the published literature to our
knowledge, by the successful fitting of the model to gypsy moth data
from Syria. The model parameters will be correlated with ambient
environmental variables, thereby providing a new mathematical tool
for entomologists to predict moth outbreaks, and hopefully ultimately
to develop effective moth control strategies. We expect that the pdf
model will become widely used in practice.
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