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ABSTRACT 
The well-known Verhulst-Pearl model in ecology, ( ( )) ( )N N t N tλ δ′ = − ⋅ ⋅

where N(t) denotes current population size, has a solution which may be 
written in the form of a logistic cumulative distribution function (cdf). It is 
widely used to describe population growth curves (Renshaw, 1991). An 
alternative model  )())(( tNtFN ⋅⋅−=′ δλ where F(t) is the integral of N(s) 
from 0 to t, was recently proposed by Kindlmann (1985) and solved analytically 
by Prajneshu (1998). The solution to this model was written in the form of a 
logistic probability density function (pdf) by Matis et al. (2009). The model has 
been previously fitted only to aphid data. We illustrate this pdf solution by 
fitting it to data on the gypsy moth (Lymantria dispar), a harmful insect which 
defoliates forests, from Latakia, Syria. The logistic pdf solution fits this gypsy 
moth data very well, which provides a mechanism for the statistical analysis of 
moth count data. Consequently, effective control strategies for gypsy moths can 
be developed with the objective of avoiding forest defoliation in Latakia. This 
successful fitting also suggests investigations using the model to describe 
population growth curves of other insect species.  

 
Keywords: Logistic Growth Model, Cumulative Growth Model, 

Logistic Probability Density Function, Gypsy Moth. 
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 هHH]ا اfKHHg hHHc KHHaSKbg FQKHHRNJت VHHReن N`HHS KHHabc_^م هZ[HH اKHHMYJذج KHHLMNOP FQKHHRS THHUVJت اFGHHIJات ودورة
(HHpcarrying capacity^رة اKLbNHHvfب" وVHHS oHHMbp qHHrseازن FjkHHP،mM`HHSداً "wHHP hHHMxyzد ا^HHLJأي ا

��KP`~ اFGIJات اwRMe hNJ أن hc KًLP }bLS اKRMJن  oٍxIJ hc .(FcVe تKHbY�S hN`�VrJذج اVMYJاً ا^H� oHMaP 
KSKsYJا oeKMg لKOP hc wbrPKLrJ oHbYPز oxIJ oeأ hc اتFGIJد ا^L� �sYNrJ ت،oHIcKRP ��KHvو FbkHIS �َHQ wHPو 

 mHry اKk�rJ oJKLc.oHbJKLc wHP ��FHJء mry ه]Z اFGIJات اFP^HS hHNJ أ�VاwHP oًH�rN_P KًHy ا�bHUKIMJ واKHSKsYJت
KHa�Vby KHaJ ن�c تKLMNOMJا VM� TUو hc obN`�VrJذج اKMYJا .mHry درةKHp FHb� ذجKHMYJا Z[Hه ^He^INJK�إ�KHaر 

�MNOMJا VM� hc دةKNLMJا Fb� و .وه]Z ا�b�J اKGJذة VRe ^pن KaJ أهFe^� obMry obMة �oxg�MJK. ا�b�J اKGJذة
 داoHHHJ اoHHHcK�RJ اoHHHbJKMNgf اVHHHM� :obN`HHH�VrJذج my^HHHe FHHH�� hN`HHH�VJاFHHHNُpِحmHHHry �HHHr�NrJ هZ[HHH اVHHHbLJب،

Logistic probability density function .wHHP �kHHcذج أVHHMYJا ا[HHه �bjN`HHe ~HH�Vآ ~��KHHvرKHHaإ� ،
�HHMNOMJا VHHM� hHHc دةKHHNLMJا FHHb� ذة أوKGHHJا �bHH�Jا ،�HHوا� �RGHH���~ ُ �HHsّ. وK`HHآ ^HHe^OJا hN`HH�VrJذج اVHHMYJا 

mM`S ةFGg FQKRS TUVJ Aphid .¡̂ LS oHbyرا¢Jا �bHUKIMrJ ًاFbP^HS اتFGHIJا FHأآ� wP ة^gة واFGIJا Z[ه 
eرVv Kabc KM� �JKLJء اKIآ� أ� hc ةFGNYP hوهo.أي FQKHRS THUVJ ~H�bsjS �NHe �HJ ^He^OJذج اVHMYJه]ا ا wRJو

 �HHsp wHHP اتFGHHIJا wHHP FHH�� عVHH� .ةFHHMrJو ¤HHIsJا ا[HHد هFHH�YemHHJوzا hJKHHMNgfذج اVHHMYJا �HHbsjS �bHHvVS hHHc 
my^e oeرVv hc اتFGIJا wP F�� عV� mry hN`�VrJا :FHO�Jا o�y .ةFGHIJا hHه FHO�Jا oH�y FHآ�zاً اFbP^HS 

MJKLJى اVN`MJا mryh،oeرVv hcإذ و^eFON� اKOH¦zر �HSدي إVHP mHJت �HQ wHPو، wHP أوراKHap اKO¦zر V�Sم 
�KتK�Jا FbP^Sط.وK�YJK� ¤IsJا ا[aJ obMrLJت اKPKavfا ¨b_rS wRMeobS©ا:

1.^He^INJK�و  FMrJة اzو�HbsjS �bHvVS �NHe mHJ اVHMYJذج اhJKHMNgf اVH� mHry hN`H�VrJع ��wHP FH اFGHIJات
FO�Jا o�y mry.

2.HHMrJ oeرVHHv hHHc اتFGHHIJا �HHMNOP FQKHHRS THHUVJ hN`HH�VrJا hJKHHMNgfذج اVHHMYJا �HHbsjS يFHHOe mHHJوzة اF
)FO�Jا o�y ^e^INJK� .(¡̂ LS oPKavªا Z[اً ه^� oMaP ةFMrJ و KYYRMS Ka�z mJوzام ا^_NHvا wHP oeرVHv hHc 

ob�Keر obJ�ob�K«gإ)hN`�VrJا hJKMNgfذج اVMYJا (اءF�ª �HbrIS h�K«Hgا إ^HLNJ د)FQKHRS (FHO�Jا oH�y
�Qو wPF  FbkISرةا�KkJا oc©ا Z[ه ¬skJ oJKLc �KaNIcKRPو .

���
�;��	 +
����	 :������	
� ���
��� ���� ������� ��� ����� ��������� ����� �����
����� �
� ��������� )�������.(



Damascus University Journal for BASIC SCIENCES Vol. 26, No 1, 2010 

11

Introduction 
Logistic cumulative growth models are well-known for describing 

population growth in ecology. Specifically, they are widely used to 
describe insect populations and their life cycles in cases where the 
population increases monotonically to some equilibrium value, called 
the ‘carrying capacity.’ This provides people working in plant 
protection with powerful techniques to predict insect counts and 
therefore to prepare effective control strategies to deal with problems 
caused by harmful insects on different types of crops. Although it has 
a remarkable descriptive power, this model has shortcomings. 
Namely, the logistic cumulative distribution function (cdf) model is 
not sensitive to outlying or unusual observations, which may be of 
scientific interest. 

A newly proposed model is the logistic probability density function 
(or the logistic pdf for short). The model describes a common type of 
growth curve in which a population rises to some maximum value and 
then declines rapidly.  The logistic pdf model has been successfully 
used previously to describe aphid populations. The aphid family is the 
leading agricultural pest in the world, and it is also a problem in 
Syria. However, the logistic pdf has never before been applied to 
other species. This paper shows a new successful application of the 
logistic pdf model to describe another insect, namely the gypsy moth 
(Lymantria dispar). The gypsy moth is the most destructive insect in 
forests worldwide, and it also defoliates forests in Latakia area,
Syria.

To this end, the contribution of this paper is twofold. First, it 
shows, for the first time, the application of the logistic pdf to an insect 
species other than the recent applications to aphids. Second, it is the 
first time that the logistic pdf model is used to describe an insect 
population in Syria. The latter contribution is very important because 
it provides a mechanism (the logistic pdf model) for analyzing gypsy 
moth count data and preparing a foundation for effective control 
strategies to deal with this insect. 

We present our contributions as follows. Section 2 briefly presents 
the logistic cdf model. Section 3 introduces the new logistic pdf model 
and gives some of its useful properties.  Section 4 demonstrates the 
application of logistic pdf model to gypsy moth data from Latakia 
area, Syria. Section 5 concludes the paper and gives directions for 
future work. 
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The Standard Logistic Growth Model 
The logistic growth curve has a celebrated history, and is still in 

widespread use today in ecological theory as well as in math 
education (Renshaw, 1991). This curve was first suggested by 
Verhulst in 1838, and derived independently by Pearl and Reed in 
1920. Let N (t) denote population size at time t, and N’(t) its 
derivative. The Verhulst-Pearl model is  

( ) (1 )NN t N Kλ′ = ⋅ −  (1) 
with parameters λ>0 and K>N(0).  The simple solution to (1) may 

be written as 

( )( ) 1 c t
KN t e λ−=

+
(2) 

The parameter c is related to the initial value N(0).  Parameters λ,
called the ‘intrinsic growth rate’, and K, called the ‘carrying capacity’, 
are key descriptors of population dynamics in ecology (Renshaw, 
1991).  For subsequent convenience, we rewrite (2) as 

max( )( ) 1 t t
KN t e λ− −=

+
(3) 

with new parameter  tmax = c / λ.
Equations (2) and (3) with K = 1 have the form of a cumulative 

distribution function, or ‘cdf’, in statistics, as they are positive 
functions with N (-∞) = 0 and N (∞) = 1. This is curious, as the 
previous derivation has nothing to do with a random variable, but is 
instead the solution to a differential equation with no randomness. 
This distribution is called the logistic cdf in statistics. The fact that (2) 
and (3) have the form of a logistic cdf is very helpful, as many 
properties of the logistic cdf are well-known in statistics. Due to this 
correspondence, we call the previous logistic growth model in (2) and 
(3) the logistic cdf model. 

The Verhulst-Pearl model in (1) is often reparameterized as 
( ) ( ( )) ( )N t N t N tλ δ′ = − ⋅ (4) 

where δ= λ/ K. In a simple mechanistic interpretation of model (4), 
intrinsic growth rate λ is interpreted as the per capita birth rate of the 
population.  The corresponding per capita death rate is δN, where δ is 
a death rate coefficient. The model is called ‘density dependent’, as 
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the death rate is a function of current size, N. There are numerous 
generalizations of models (1) and (4). One in common usage is the 
“power-law” logistic in which N (t) in (4) is raised to a power (Banks, 
1994). 

The New Logistic Growth Model, the Logistic pdf 
We consider now the derivation of this different logistic model. Its 

mechanistic formulation was first proposed in mathematical terms by 
Kindlmann (1985) to describe insect populations, and is given as 
follows: 

( ) ( ( )) ( )N t F t N tλ δ′ = − ⋅
where 

∫=
t

dssNtF
0

)()(

(5) 
 

(6) 

F(t) denotes the past population size, or ‘cumulative density’, since 
the initial time (t = 0).  In simple terms, model (5) changes the per 
capita death rate in (4) from δ N (t) to δ F (t).  Prajneshu (1998) 
derived the first analytical solution to the differential equation in (5), a 
nontrivial feat, in the form: 

2( ) (1 )
bt

bt
aeN t de

−
−=

+
(7) 

where a, b, and d are positive parameters.   Matis et al. (2007) 
shows that the solution to (5) can also be written using stable 
parameters, which simplify fitting the model to data, as:                 

max

max

( )
max

( ) 2
4( ) (1 )

b t t

b t t
N eN t e

− −
− −
⋅=

+

(8) 

The parameters in this model are naturally interpretable, as 
parameter Nmax denotes the maximum size of N (t) in (8) and tmax the 
time of this maximum. Parameter b is a relative rate defined 
subsequently. The biological meaning of the parameters in equation 
(8) facilitates the choice of initial parameters in iterative nonlinear 
estimation procedures. Of course, they also make it more user-friendly 
for biological investigators.  

Some useful facts about model (8) follow: 
1. This solution may be written more parsimoniously using the 

hyberbolic secant (sech) function as 
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2 max
max

( )( ) sech 2
b t tN t N − = ⋅    (9) 

Hyperbolic functions are defined in calculus courses, but seldom 
used in practice. A novelty about (9) is that we will later fit “real-
world” data to this squared hyperbolic function. 

2. Once the observed data are fitted to model (8), the estimates of 
Nmax, tmax, and b may be used to estimate the parameters of underlying 
model (5).   We show in Matis et al. (2007) that 

1
1

+
−⋅= d

dbλ
2

max2
b
Nδ =

max
2

4(0) (1 )
d NN d
⋅=
+

Where: 
maxbtd e=

(10) 
 

(11) 
Parameter d is typically very large, hence it follows from (10) that 

parameter b is an accurate approximation for the per capita birth rate λ.
3. It is also clear that solution (8) could be written as  

( ) ( )N t K p t= ⋅ (12) 
where p(t) is the logistic probability density function, or ‘pdf’, 

defined as 
max

max

( )

( ) 2( ) (1 )
b t t

b t t
b ep t e

− −
− −

⋅=
+

(13) 

and K is the constant  
bNK /4 max= (14) 

One can show that K is the total area under the N (t) curve, also 
denoted as AUC, by integrating (12) over the full range of t, noting 
that p (t) is a pdf integrating to 1. The AUC is an important descriptor 
in ecology. The logistic pdf (also called the sech-squared pdf due to 
(9)) is also well-known in statistics. It is symmetric with heavier tails 
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than a Normal pdf with the same mean and variance (Johnson and 
Kotz, 1970). 

We call new model (8) the logistic pdf model, due to (12). It seems 
curious again that mechanistic model (8) also, which is devoid of any 
randomness, would have as its solution a scaled form of a well-known 
probability distribution in statistics. We note, however, that one can 
formulate a stochastic analog to model (5), in which the current count 
N(t) is a random variable. As a contrast to ‘deterministic’ model (8), 
which is the solution to a single differential equation, Matis et al. 
(2005) presents an example of an ‘exact’ solution to a stochastic 
analog of (5). This ‘exact’ solution is based on solving a system of 
over 180,000 (Kolmogorov) differential equations. 

Application of the New Logistic  
pdf Model to Gypsy Moth Data 

Both Kindlmann, the Czech ecologist who first formulated (5), and 
Prajneshu, the Indian mathematician who obtained solution (7), sought 
specifically to describe aphid population growth. Theoretical reasons 
why the aphid family satisfies the mechanistic assumptions in (5) are 
reviewed in Matis et al. (2007). This model formulation has also been 
verified empirically by fitting model (8) successfully to a number of 
aphid species, as reviewed in Matis et al. (2009). These past studies 
demonstrate the versatility of the model to describe observed aphid 
abundance curves, whether the peak count is high or low, the spread 
narrow or wide, or the time of maximum short or long. 

To our knowledge, however, model (8) has never before been fitted 
in a published study to a species other than the aphid. Yet it would not 
be surprising if this versatile logistic pdf fitted successfully population 
size data from other species as well, even though their population 
dynamics might be completely different from those applicable to the 
aphid in model (8). 

We illustrate the logistic pdf and at the same time explore the 
hypothesis that it might fit other insect species using gypsy moth data 
(Al alouni, 2009). Gypsy moths defoliate forests in Syria, and studies 
are conducted to control them.  The observed data are given in Table 1 
and are illustrated graphically in Figure 1 as small solid circles. The 
data consist of the average number of gypsy moths, denoted Y (t), 
caught in four pheromone traps over time t (in days) near Latakia (in 
Slunfeh). 
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Table 1: Average Moth Counts 
Elapsed Time (days) Count 

0 0.4 
6 10.6 

11 101.2 
19 467.6 
26 756.8 
33 309.6 
40 18.4 
47 24.5 
55 9.6 
62 4.8 
68 2
74 0.8 
78 0

Figure 1:  Illustration of Logistic pdf Curve for Moth Data 
 We illustrate fitting this data set using standard nonlinear least 

squares (Neter et al., 1996; ), as implemented in SPSS (2007).  With 
Y(t) representing the observed population size, we assume regression 
model: 

ε+= )()( tNtY (15) 
where ε denotes an independent random error term. The parameters 

in (8), with their standard errors in parentheses, are Nmax = 778.5 
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(16.4) moths, tmax = 24.76 (0.15) days, and b = 0.2576 (0.0067)/days. 
The resulting fitted curve is 

2)8.24(258.0

)8.24(258.0

)1(
)5.778()4()( −−

−−

+
⋅⋅= t

t

e
etY

(16) 

which is illustrated also in Figure 1 as a smooth curve.  This curve 
fits the moth data remarkably well. 

Though a well-fitting curve is always prized for publication 
purposes, the fitted curve alone is not sufficient for subsequent 
statistical analysis. The curve is useful primarily for providing 
parameter estimates. The parameter estimates provide response 
variables, which might be used in ecological studies to detect and 
describe the impact of environmental factors on observed abundance 
curves. For example, we have shown in Matis et al. (2008) using data 
from a designed experiment that such response variables are helpful in 
explaining the effects of nitrogen and of irrigation treatments on 
cotton aphid abundance.   

We expect that the model will be useful in the same way in relating 
environmental effects to moth abundance in Syria, which will be a 
useful part of any control strategy. More specifically, the data in 
Figure 1 come from one of four sites of varying elevation and forest 
composition in Al alouni (2009). One approach for analyzing these 
data is to relate model parameters from a site to its environmental 
factors. For example, letting Zi denote a general response variable, 
useful response variables from the moth data in Figure 1 include: 
1. Z1 = Nmax, which estimates the peak count, is of paramount interest 

to ecologists as a measure of maximum infestation. In this example, 
recall Nmax = 778.5 moths. 

2. Z2 = tmax , which is of interest as a time to maturity for the moth in 
its life cycle at the site. In the present example, tmax = 24.76 days 
from the date when observations started (May 25, 2008). 

3. Z3 = b, which in the moth context may be interpreted as an initial 
per capita ‘emergence’ rate in the life cycle of the moth. This is b = 
0.2576/day for these data. 

4. Z4 = δ, which in the moth context is a population decline 
coefficient. For this example, using (10), one has δ = (0.2576)2 /
1557 = 4.26 10-5 (moth-days2)-1.

5. Z5 = K, which to an ecologist is the ‘total cumulative density’, and 
is used as a measure of the total environmental impact of the moth 
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infestation on its available resources.  In this example, K = 
3114/0.2576 = 12088 moth-days. 

6. Z6 = σ, which is the standard deviation of the logistic pdf.  The 
standard deviation of the logistic is, from Johnson and Kotz (1970): 

3b
πσ = (17) 

For the present example this gives σ = π/ (0.2576* 3 ) = 7.04 days. 
We use 4* σ as a measure of the duration of substantial moth 
infestation. Hence the duration of infestation for these data is 
estimated to be 28.2 days. 

Each of these variables defines some naturally interpretable 
characteristic of a growth curve, and each is useful in describing 
environmental effects. An experimenter might be able to obtain some 
reasonably accurate, subjective estimate of Nmax and tmax without a 
model such as (8). Accurate estimates of b, δ, K, and σ, however, 
would be very difficult to obtain without such a model. 

These response variables could be calculated for the other sites as 
well, to determine statistically whether specific environmental factors 
are correlated with one or more of the Z1 to Z6 variables. As an 
illustration, published studies have shown that moth abundance in 
North America is related to elevation and to forest composition 
(Sharov et al., 1997). Studies are currently in progress to determine, 
for example, whether the above population measures for the gypsy 
moth in Syria are related to elevation and to the proportion of oak 
trees in a forest. We expect that such studies will lead to abundance 
predictions, and hopefully ultimately to moth control strategies. 

Conclusions 
The paper shows that the logistic pdf model may be used to 

describe the population size of insects other than aphids. This fact is 
demonstrated, for the first time in the published literature to our 
knowledge, by the successful fitting of the model to gypsy moth data 
from Syria. The model parameters will be correlated with ambient 
environmental variables, thereby providing a new mathematical tool 
for entomologists to predict moth outbreaks, and hopefully ultimately 
to develop effective moth control strategies. We expect that the pdf 
model will become widely used in practice. 
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