1

3 2

. [9] [7] [8]

1

. - -

. - - 3

:Introduction (1

Genetic Algorithms (GA)

.

•

•

. Chromosomes

. .[1]

<u>.</u>[1]

:Chromosomes Encoding (2

.
Discrete Variable

Continuous Variable

Precision

:Encoding Type (3

Population

: ^[1] Binary Encoding (1-3

: (1)

Chromosome 1 1 1 0 0 0 1 0 1 1 1 1 Chromosome 2 1 1 1 0 1 1 1 0 0 0

(1)

:Selection Procedures (4

:Roulette Wheel Selection

. 100

:

$$P_{select}(i) = \frac{F_i}{\sum_{j=1}^n F_j}$$

.i Pselect(i)

.i Fi

(1-4

. n

.

.

: C

$$C(i) = \sum_{j=1}^{i} F_j$$

[1,100]

: (2)

		F	
11%	0.11	13	
30%	0.19	22	
43%	0.13	15	
60%	0.17	19	
82%	0.22	25	
96%	0.14	16	
100%	0.04	5	
	1.00	115	

(2)

: Elitism (2-4

Elitism

:^[10] Crossover (5

Shuffling

.

-n

:Simple n-point Crossover -n (1-5

)

i . (xi+1) (xi) (Genes

2-point (3)

:

.2 =

قيمة نقطة العبور الثانية = 6.

		1	2	3	4	5	6	7	8
	Chromosome 1	1	1	0	1	1	1	1	0
	Chromosome 2	0	0	0	0	1	0	0	1
		\downarrow	↓ ↑	↓	\downarrow				
	Chromosome 1	1	0	0	0	1	0	1	0
	Chromosome 2	0	1	0	1	1	1	0	1

-2 (3)

: Mutation (6

.

()

·

probability of Mutation (Pm)

.

: (4)

Chromosome 1	1	0	1	1	1	1	1	0
	\downarrow	↓	↓	↓	↓	1	\downarrow	↓
Chromosome 1	1	0	0	1	1	1	1	0
(4)								

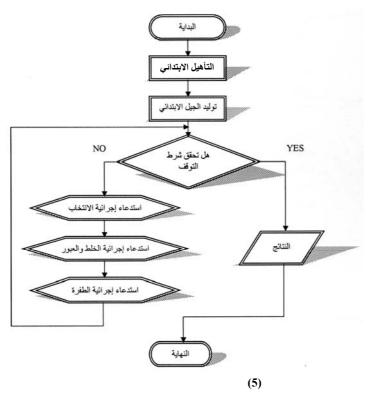
(7

:

) [2] [1](...

[4] [3]

(Po_s=100)
.(Pm=0.008)
.[5](Po_s=30)


[3]
.
.
[6]
[3]

.[3]

· : (1-7

(5)

: Matlab

:

<u>:______-1</u>*

•

: Population Size -1

•

. !

: **-2**

: -3

<u>: - 2</u>*

.[12]

. : - 4^r

Fitness

•

 $F = V_{max} + V_{min} - V$

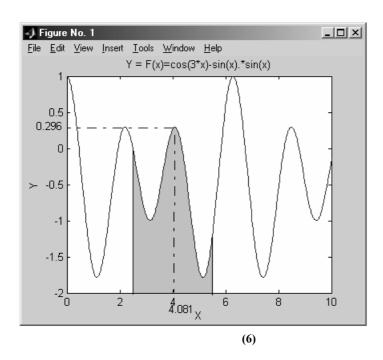
. :V_{max}

. :V_{min}

. -n

.

: (2-7


[0, 10]

: (6)

 $y = f(x) = \cos(3 * x) - \sin(x)^2$

()

[2.5, 5.5] (6)

•

:^[10] Matlab

x=2.5:0.0001:5.5;

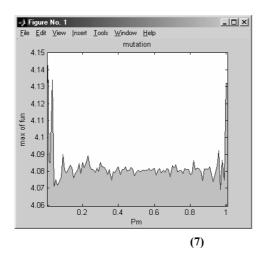
func= $\cos(3*x)-\sin(x).^2$;

Y=eval(func);

X = find(max(Y) = =Y)*0.0001+2.5;

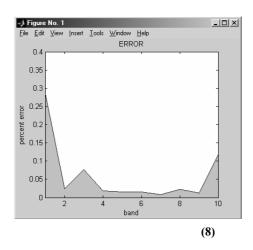
max(Y)

(4.0811, 0.2966)


rand

. Matlab

(1-2-7 : Pm = [0:0.01:1].(50) (7)


[4.07, 4.14] (4.081) (0.06)

[0.1, 0.9]

(7)

:(8)

<u>: (2-2-7</u>

:

Po_s = [8:8:400].(0.30)

. (50)

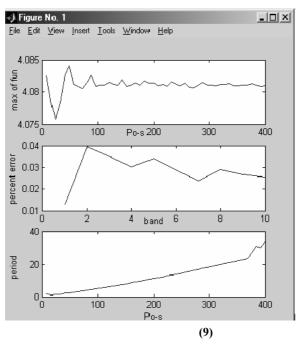
•

(9) ()

[4.076, 4.084]

(4.081)

(0.005)


.

(9)

(9)

(9)

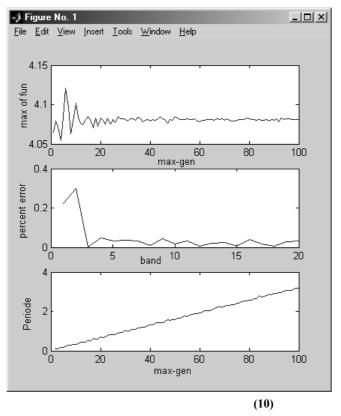
.

: (3-2-7

.

:
Max_gen = [1 : 1 : 100]
.(0.30)

. (30)


(10)

. [4.050 , 4.120]

(4.081) . (0.04)

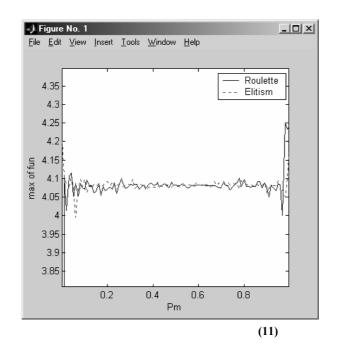
(10)

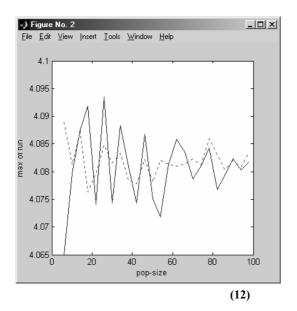
(10)

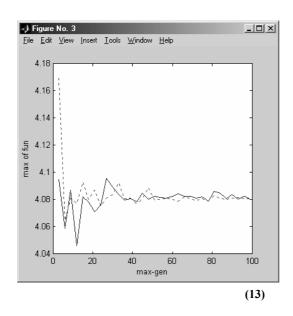
<u>: (4-2-7</u>

:

:


Pop_init = [3, 3, 3, 3, 3, 3, 3, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 2.7, 2.7, 2.7, 2.7, 2.7, 2.7, 2.7]


(11)


.

(12)

(13)

: (8

•

[0.1, 0.9]

(80)

.

.

Artificial intelligence	T
Binary Encoding	
Chromosome	
Crossover	
Elitism	
Fuzzy logic	
Gene	
Genetic algorithm	
Interpolation	
Mutation	
Neural network	
Population	
Population size	
Probability of mutation	
Probability of Uniform	
Crossover (Pu)	
Roulette wheel	
selection	
Shuffling	
Truncation	

References

1 – E. Goldberg, David, "Genetic Algorithms in Search, Optimization, and Machine Learning", Addison-Wesley Publishing Company, Inc,

1989.

2 – Goldberg, D. E., & Lingle, R. (1985). "Alleles, loci, and the traveling salesman problem". Proceedings of an International Conference on Genetic Algorithms and Their Applications, 154-159.

3 – Meyer, D, C. "An evolutionary Algorithm with Applications to statistics". Journal of computational and graphical ststistics, volume 12, number 2, pages 1-17, DOI:10.1198/106186003169.

4 – Davis, L. (1991). "Handbook of Genetic Algorithms", Van Nostrand Reinhold, New York.

5 – Grefenstette, J.J. (1986). "Optimization of control parameters for genetic algorithms". IEEE-SMC, SMC-16, 122-128.

6 – Smith, T. (2005). "Artificial Intelligence". Computer Science 165A.

7 – Fitzpatrick, J. M., Grefenstette, J. J., & Van Gucht, D. (1984). "Image registration by genetic search", Proceedings of IEEE Soutbeast Conference, 460-464.

8 – Raghavan, V. V., & Agarwal, B. (1987). "Optimal determination of

8 – Raghavan, V. V., & Agarwal, B. (1987). "Optimal determination of user-oriented clusters: At application for the reproductive plan". Genetic

algorithms and their applications: proceedings of the second International Conference on Genetic Algorithms, 241-246.

9 – Axelrod, R. (1985, November). "The simulation of genetics and evoluation". Paper presented at A conference on Evolutionary Theory in Biology and Economics, University of Bielefeld, Federal Republic of Germany.

" .(2003) . - 10 Matlab" (2005). - 11 .(2003) . - 12 .2 - 19

.2006/3/5