
Damascus University Journal Vol. (27) - No. (1) 2011 Sonbol- Ghneim- Desouki

7

An Application Oriented Arabic Morphological Analyzer

Dr. Riad Sonbol Dr. Nada Ghneim Dr. Mohammed Said Desouki*

Abstract
Morphological analysis is an important step in natural language processing and its

various applications. Each kind of these applications needs a certain balance between:
performance, accuracy, and generality of solutions (i.e. getting all possible roots); while
we focus on performance with a good accuracy in Information retrieval applications,
we try to achieve high accuracy in systems like pos-tagger and machine translation, and
both high accuracy and high generality in systems like language learning systems and
Arabic lexical dictionaries. In this paper, we describe our approach to build a flexible
and application oriented Arabic morphological analyzer; this approach is designed to
satisfy various requirements of most applications which need morphological processing.
It also provides a separate stage (Original Letters Detection Algorithm) which can be
plugged easily in any Other morphological analyzer to improve its performance, and
with no negative effect on its reliability.

Keywords: Arabic Natural Language Processing; Arabic Morphological Analysis;
Stemming; Original Letters Detection Algorithms, Application oriented system.

* Informatics Department, HIAST - Damascus, Syria
 riad.sonbol@ hiast.edu.sy, nada.ghneim@hiast.edu.sy, said.desouki@hiast.edu.sy

An Application Oriented Arabic Morphological Analyzer

8

1. Introduction

The importance of Arabic language
processing tools has dramatically increased in
the last decade because of the huge increment
of Arabic digital content on the internet, and
in internet users who speak Arabic. This fact
increases the importance of creating language
processing tools that can process this content,
and interact with these users in better ways.

Morphological analysis is an important
step in Arabic language processing because of
the complex morphological structure of
Arabic where we have infixes along with
prefixes and suffixes. In addition, each prefix
or suffix may have its own syntactical tag; this
means that we have to use the result of the
morphological analysis stage in higher stages
of Arabic processing like POS-tagging,
syntactical analysis. For example, the Arabic
word " "

which means I wrote it-
consists of a verb " ", a subject " ", and an
object " ", so it is very useful to analyze the
word to its "simplest" parts before we
determine its syntactical tags.

Moreover, morphological analysis is a
basic step in various applications including
text mining, information retrieval (IR),
machine translation, automatic
summarization, and Arabic learning systems.
This diversity in applications is reflected as a
variety in morphological analyzer's
requirements; each application needs a certain
balance between:

high accuracy,

high performance ,

generality in solutions i.e. finding all
possible roots for each word.

In IR applications, for example, the most
important metric is performance. This does
not mean that accuracy and generality are not
important, but that we can accept intermediate
values for these two metrics to improve the
performance. On the other hand, it is very
important to have a high accurate
morphological analyzer in applications like
machine translation. Moreover, there are
many applications which need both generality
and accuracy, like Arabic learning systems

where we need to find all possible results, and
only correct ones.

Therefore, the effort spent on creating a
reliable, efficient, and "flexible" Arabic
morphological analyzer is justified by its
reuse in many of these applications.

In this paper, we will present an approach
to build a high flexible Arabic morphological
analyzer. Our morphological analyzer can be
adjusted to satisfy the requirements of all kind
of applications with simple parameterization.

In section 2 we will present an overview of
previous Arabic Morphology processing
approaches. Section 3 will provide a
description of Original Letters Detection
Algorithm which we consider the main axe of
our morphological analyzer. In section 4, we
describe our flexible morphological analyzer.
We provide our methodology to evaluate the
approach in section 5, and we finally conclude
our study in section 6.
2.Overview of Previous Works
Several approaches have been proposed for
Arabic stemming; many papers survey these
techniques (Al-Sughaiyer et al. 2004; Larkey
et al, 2001; Darwish, 2002; Al-Fedaghi et al.,
1989).
Buckwalter s morphological analyzer follows
a dictionary-based approach (Buckwalter,
2002), It divides the Arabic word into all
possible three parts: prefix, stem, and suffix.
Then the analyzer checks the correctness of
each segmentation using three Arabic
dictionaries (prefixes, stems, and suffixes),
and three compatibility tables representing
pairs of compatible morphological categories.
This system provides high reliable results
which leads it to be one of the most useful
analyzer in NLP tasks. However, it needs a
huge size of manually entered data which
produces many limitations in performance,
and generality of solutions.
To avoid such limitations, a number of
approaches depend on a strong linguistic base
(Al-Bawab et al., 1994). These approaches
give, in general, high accurate results, but
need long time to construct and very strong
linguistic base.

Khoja and Garside (Khoja et al, 1999)
developed an effective stemmer depending on

Damascus University Journal Vol. (27) - No. (1) 2011 Sonbol- Ghneim- Desouki

9

simpler linguistic rules, this approach (1)
removes prefixes and suffixes, then (2)
matches the remaining word against the
patterns to extract the root, and finally (3)
checks whether the extracted root is a valid
root using an Arabic roots dictionary. Khoja
stemmer is considered as a high performance
stemmer, but it has some drawbacks such that
removing prefixes and suffixes may lead to
wrong solutions or a failure state. Moreover, it
generates wrong roots for words which
contain Ebdal cases like (kawala). This
stemmer gives one solution for each word, so
it ignores other possible solutions. This fact
makes the use of this stemmer in NLP
applications that needs providing all possible
solutions less effective.

3. Original Letters Detection Algorithm

The aim of Original Letters Detection
Algorithm is to detect morphological
information about each letter in an Arabic
word to facilitate retrieving its root; this does
not just include the detection of some original
letters, i.e. the root letters, but also the
detection of some additional letters, and the
extraction of available morphological
information about the rest of word letters.

We emphasize here that this algorithm is
not a stemming algorithm, but an auxiliary
algorithm to help Arabic stemming process to
retrieve more accurate results in better
performance. However, experiments showed
that this algorithm can retrieve the root for
more than one third of the Arabic words.

Original Letters Detection Algorithm
provides in two stages very useful
information, without using stored data. In the
first stage, we will encode Arabic letters by
their initial "morphological states" codes. In
the second stage, we will apply
"transformation rules" to change the current
morphological states of letters to "better" and
more precise ones to facilitate retrieving the
root.

In next paragraphs, we will describe, in
detail, the two stages of this algorithm.
3.1. First Stage (Initialization)

In the first stage, we start from the static
property for each Arabic letter to determine its

initial "morphological state". Each
morphological state defines a limited number
of possibilities for the concerned letter. In
fact, we have two kinds of morphological
states: deterministic, and ambiguous. In the
deterministic cases, we know if the concerned
letter belongs to the root or not, while we do
not know this information in the ambiguous
cases (we will see later that there are several
levels of ambiguity).

For instance, we have a morphological
state that says: the concerned letter surly
belongs to the root. Of course, it is a
deterministic case; we will call it O-Case. On
the other hand, an ambiguous case says: if the
concerned letter is an additional one, then it
surly belongs to the prefixes side of the word,
we will call this ambiguous state P-State.
Another ambiguous case (the S-case) says: if
the concerned letter is an additional one, then
it surly belongs to the suffixes side of the
word. And so on.

A complete description of all the defined
morphological states is shown in the Table-1.

Table 1. Description of
defined morphological states

State Description

O The concerned letter is surely part
of the root.

A The concerned letter is always
considered as an additional letter.

P The concerned letter can only be
added in the prefix part.

S The concerned letter can only be
added in the suffix part.

T The concerned letter can be added
in both sides of the word, i.e. in
the suffix part or in the prefix part.

U The concerned letter can be added
anywhere in the word.

After encoding each letter by its initial
morphological state code (Table-2), we obtain
an encoded word that can be more useful for
morphological analysis. The root can be
extracted directly in some cases, like when we
have 3 Os (or more) in the encoded word, and
in this case they represent root letters.

An Application Oriented Arabic Morphological Analyzer

10

Table 2. The initial

morphological state of
Arabic letter

Arabic Letters Initial
State

O

A

P

S

T

U

3.1.1. Example:

We can extract the root of the Arabic word
' ' only by using this initial stage, but
we can not do that in the case of the word
' ' (Figure-1):

3.2. Second Stage (Applying Transformation
Rules)

In fact, the six morphological states are
located at four levels of information. Each
level has certain values of ambiguity:

O and A states are at the highest level of
information (the deterministic level); because
we can certainly determine that the concerned
letter is from the root letters or not (zero-
ambiguity).

Figure 2. Classifying morphological states
depending on their ambiguity

P and S states are from the second level of
information, where we have two choices for
the concerned letter: it is from the root letter,
or it is an additional letter in one side of the
word (the prefixes side for P state and the
suffixes side for S state).

T state is from the third level of
information, where we have three choices for
the concerned letter: it is from the root letter,
it is additional letter in the prefixes side of the
word, or it is from the suffixes side of the
word.

U state is at the lowest level of information,
where all choices are available: from the root
letter, additional in the prefixes side,

U

O

S

P

O

T

?

U

U

O

P O

U

A

U

O

=> The Root is ' '

D
et

er
m

in
is

ti
c

C
as

es

U

S

P

T

A

O

Fourth level

Third level

Second level

First level

A
m

bi
gu

ou
s

Figure 1 . Applying the initial step on the word ' ' is sufficient to
retrieve the root, but is not sufficient on the word ' '

Damascus University Journal Vol. (27) - No. (1) 2011 Sonbol- Ghneim- Desouki

11

additional in the suffixes side, or additional
between the root letter.

In the second stage, we will apply
"transformation rules" which consider the
context of each letter in the word. The aim of
these rules is to move word's letters each from
its morphological state to a higher one with
less ambiguity.

 We use the following transformation Rules*:

R1) Change each 'P' after 'O' to 'O'.

R2) Change each 'S' before 'O' to 'O'.

R3) Change each 'P' after 'S' to 'O', and
each 'S' before 'P' to 'O'.

R4) Change each 'T' before 'P' to 'P'.

R5) Change each 'T' before 'O' to 'P'.

R6) Change each 'T' after 'S' to 'S'.

R7) Change each 'T' after 'O' to 'S'.

R8) Change the first letter to 'P' if it is
not 'O' or 'A'.

R9) Change the last letter to 'S' if it is not
'O' or 'A'.

R10) Cutting Rule:

Let: nr: Maximum length of the root.

no: Number of O letters in the encoded word.

np: Index of the first P letter.

ns: Index of the last S letter.

So, for each letter at an index i where:

[0,] [,]p si n n len

and

min(| |,| |) ()p s r oi n i n n n

Change it to 'A'.

These rules are concluded from the
properties of each morphological state. For
example, we can not have P-Letter after O-
Letter, because if so, all letters before this P
should be part of the prefix.

* Note that when using the words "before" and "after" in the
transformation rules, we consider the direction of Arabic
reading (right to left).

3.2.1. Example:

For example, we can extract the root of ' '
immediately after applying this step (Figure-
3).

Figure 3. Applying Original Letters
Detection Algorithm on the word ' '

3.3. Additional Improvement:

We add some improvements to the last stages
by adding the position conditions (Sonbol et
al., 2008) when processing some letters. In
fact, there is a maximum index for each letter
when it is situated in a prefix. For example,
the letter Baa ' ' can be part of a prefix only if
it is situated in the first three letters like
' '. And it can not be part of the prefix if
it is not situated in the first three letters like
' '.

We can apply the same idea for suffixes,
by using the minimum index in suffixes for
each letter, but we found that this idea is not
efficient for S letters (except Haa ' ').

Table-3 presents the maximum index in
prefix and the minimum index in suffix for
certain letters (P, S, and T letters). The symbol
'*' indicates that it is not effective to put such
condition for this letter.

U

O

S

P

O

T

Stage
One

Stage Two

U

O

O

P

O

P

=> The Root is
' '

 R4 R2

An Application Oriented Arabic Morphological Analyzer

12

Table 3. Statistics about the position of

some letters in the word

The letter

The
maximum
index in
prefixes

The
minimum
index in
suffixes

Baa ' ' 3

Lam ' ' 5

Seen ' ' 4

Faa ' ' 2

Haa ' '

3

Kaf ' ' 3 *

Noon ' ' * *

Meem ' ' * *

In addition, the maximum length for any
prefix or suffix is (len-2) where len is the
length of the word. For example, this
maximum is satisfied in ' ' where the prefix
is ' ' and in ' where the suffix is ' '.

3.4. The Effectiveness of Applying
Original Letters Detection
Algorithm in finding roots:

To prove the effectiveness of Original Letters
Detection Algorithm we will describe the
distributions of Arabic words after applying
this algorithm.

Our statistics on about 375000 words show
that we can divide Arabic words after
applying Original Letters Detection Algorithm
to three parts (Figure-4):
30% of Arabic words are solved
directly after applying Original letters
detection algorithm,
30% of Arabic words represent
particles, foreign words, and other
static words,
40% of Arabic words are solved
partially after applying Original letters
detection algorithms, i.e. we found part
of root's letters. Most of this part
(about 25% of Arabic words)
represents words that contain two
original letters.

It is important here to emphasize that each
original letter (O) adds more constraints on
the process of root extraction; this means
retrieving more accurate result.

Figure 4-The Distribution of Arabic Words
after Applying Original Letters Detection

Algorithm
In addition, we evaluate Original Letters

Detection Algorithm by checking the
correctness of the Arabic words classified in
the first part (where we find the root directly).
The results (Table-4) show that we retrieve a
correct root for about 99% of the words.

Table 4- Original Letters Detection
Algorithm's Accuracy

No. of
words

Accuracy
of

Tri-root
words

Accuracy of
NonTri-root

words

Total
Accuracy

3200 99.7% 68.7% 98.9%

After a study of errors states, we
concluded that:

About 75% of errors are because of
words from non tri-root.

Some errors related to Ebdal
problem.

Depending on the last experiments, we
can conclude that Original Letters
Detection Algorithm is very useful to
improve both the performance and the
accuracy of a morphological analyzer.

Particles,
Foreign
Words
30%

Two-O
25%

One-O
10%

Zero-O
5% Three-O

30%

Damascus University Journal Vol. (27) - No. (1) 2011 Sonbol- Ghneim- Desouki

13

4. Our Approach for an Arabic

Morphological Analyzer

In this section, we will present our approach
for a flexible and application oriented Arabic
morphological analyzer. This flexibility is due
to the Original Letters Detection Algorithm,
and to other techniques that we use to achieve
a balance between accuracy, performance, and
generality.

4.1. Algorithm:

We summarize our approach by the following
steps:

Step1: Check if the word is a particle or a
foreign word using a dictionary of
particles and common foreign words.

Step2: Apply normalization steps:

a. Remove diacritics, and the Shadda.

b. Replace all distinct forms of Hamza with
().

c. Replace Madda () with Hamza and Alef (

).

d. Replace Alef Maksura () with Alef ().

Step3: Apply Original Letters Detection
Algorithm.

Step4: Generate a bank of solutions which
consist of each sequence of letters
satisfying the following conditions:

a. Contains all Original letters (letters in the
state O).

b. Does not contain any Additional letters
(letters in the state A).

c. The pre-string is valid. We define the pre-
string as the string of letters that are
situated before the first root's letter in the
word (which is called Faa AL-Fel). For
example, in the word ' ' we consider

' ' as a pre-String, while the classical

prefix is only ' '.

d. The suf-string is valid. We define the suf-
string as the string of letters that are
found after the last root's letter in the

word (which is called Lam AL-Fel). We
consider a string as a valid suf-string if it
satisfies the following conditions:

i. There is no letters in the state P.

ii. If we have the letter Meem ' ' in the suf-

string, it should be one of the following
suf-string: { } .

iii. If we have the letter Taa Marbuta ' ' in the

suffix, it should be one of the following
suffixes: }{

iv. If we have the letter Hamza in the suffix,
the previous letter of Hamza should be
Alef ' '.

Step5: Generate solutions that represent
shadda case, elimination case, and non-tri
roots (optional step).

Step6: Correcting solutions in the bank of
solution: we can make a balance between
the three metrics (reliability,
performance, generality) by applying the
next optional steps:

a. Pattern existence test using a list of
available patterns.

b. Root existence test using a list of available
roots.

c. Apply Ebdal and Ealal rules: we do this
step only for invalid roots to check if it is
invalid because of a special case.

d. Derivation test: in this test we try to derive
the original word from the root using
Arabic derivation rules. To achieve this,
we use SARF system (Al-Bawab et al.,
2007). However, this test affects clearly
the performance of our morphological
analyzer, but it still an optional check to
provide the possibility of using this
system in high accurate applications.

4.2. Controlling Technique:

To control the balance point (accuracy,
performance, generality) we use the
next two techniques:

An Application Oriented Arabic Morphological Analyzer

14

Adding some parameters to control the
different modules of the system. We
add 11 parameters (Table-5).

Ranking the solutions by its "accuracy"

.Table 5- Morphological Analyzer's
parameters

Description
Value's
type

Parameter

ID

Do StopWord
Test or not.

Boolean Stp 1

Do
ForignWords
Test or not.

Boolean Frg 2

Do
RootExistance
Test or not.

Boolean Rot 3

Do Patterns
Test or not. Boolean Pat 4

Do Ebdal Test
or not.

Boolean Ebd 5

Do Ealal Test
or not. Boolean Eal 6

Do Shadda Test
or not.

Boolean Shd 7

Do Eliminating
Test or not.

Boolean Elm 8

Do Derivation
Test or not

Boolean Drv 9

Satisfying the
best solution or
not.

Boolean Bst 10

ROOT_MAX_
LENGTH

Integer (3,
4, or 5)

RML 11

5. Evaluation:
The main goal of this evaluation is to

prove the flexibility of our approach, i.e. to
prove that it can satisfy the needs of most
applications. To do this, we will describe our
test corpora, choose evaluation metrics, and
choose some states for our morphological
analyzer (providing that each state represents
certain values of morphological analyzers'
parameters). For each state, we will evaluate
chosen metrics on the test corpora (or on a
part of it).

5.1. Evaluation metrics:
We choose our metrics to predict how our

morphological analyzer acts in different kinds
of applications. These metrics include
performance, accuracy, and contextual
metrics:
Speed of processing: we are interested
here in the performance comparison
between our morphological analyzer in

its different states and other analyzers,
and in the relation between the
performance and other metrics.
Accuracy of the first solution.
Accuracy of all solutions.
Contextual correctness of the first
solution.
Existence of the contextual correct
solution in the solutions.

5.2. Test corpora:
We conducted our experiments using three
different corpuses:

The first corpus consists of a lists of word-
root pairs (167162 pairs) extracted from
HIAST Arabic lexical database (Al-Attar et
al., 2007) which covers the morphological
categories in Arabic (verbs, nouns, infinitives,
plural of nouns, analogous adjectives,
exaggeration forms of active participle, non-
standard plural etc). Because of this variety,
this corpus has an important role to determine
if a morphological analyzer acts with the same
effectiveness on all morphological categories.

The second corpus is a collection of 585
Arabic articles covering different categories
(politics, economy, culture, science and
technology, and sport). This corpus consists of
more than 375000 words. We will use this
corpus to evaluate the first metric (speed of
processing).

The third corpus is a manually verified
sample consists of five articles (more than
2000 words). We will use this corpus to
evaluate the contextual metrics (fourth and
fifth ones).

5.3. Chosen states for the
morphological analyzer:

As we mentioned later, we have ten
parameters to control the balance point
between performance, accuracy, and
generality. In this section, we will choose the
most important states that represent our
system's capability to cover the needs of most
NLP applications.

To name morphological analyzers' states,
we follow the form Rn(+)(a|b|c) where:

Rn means that we set the values of the
first nth parameters (according to the
numbers in Table-5) to true. For

Damascus University Journal Vol. (27) - No. (1) 2011 Sonbol- Ghneim- Desouki

15

example, R3 means that the values of the
parameters 1, 2, and 3 are true.

We add '+' to the form if we set Bst
parameter to true.

We add a letter to represent the value of
the root maximum length RML (a for 3,
b for 4, and c for 5), if we do not add
anything RML=3.

Table-6 shows the states we choose in the
evaluation and their names; we represent the
values of Bst and RML in the first two rows,
and the first eight columns for the first eight
parameters where we shadow the field only if
it is true.

Table 6- The most important states in the
morphological analyzer

3 5 RML

True False

Bst

R0+ R0c Drv Elm

Shd Ela Ebd Pat Rot Frg Stp

R1+ R1c Drv Elm

Shd Ela Ebd Pat Rot Frg Stp

R2+ R2c Drv Elm

Shd Ela Ebd Pat Rot Frg Stp

R3+ R3c Drv Elm

Shd Ela Ebd Pat Rot Frg Stp

R4+ R4c Drv Elm

Shd Ela Ebd Pat Rot Frg Stp

R5+ R5c Drv Elm

Shd Ela Ebd Pat Rot Frg Stp

R6+ R6c Drv Elm

Shd Ela Ebd Pat Rot Frg Stp

R7+ R7c Drv Elm

Shd Ela Ebd Pat Rot Frg Stp

R8+ R8c Drv Elm

Shd Ela Ebd Pat Rot Frg Stp

R9+ R9c Drv Elm

Shd Ela Ebd Pat Rot Frg Stp

5.4. Results:

a- Performance, Accuracy, and Generality
of solutions:

We evaluate our morphological analyzer
using the last three corpora. Figure-5 shows
the most important balance points we
achieved using our analyzer.

The Horizontal axe represents the
processing speed, while the vertical axe
represents the accuracy. Filled circles with
bold names represent Rn states in which we
try to find all possible solutions, where
empty circles represent Rn+ states in which
we get the best solution. In this way we
represent the accuracy, performance, and
generality (for more detailed results: see
Table-7, and Table-8).

In addition, we place some previous
related works (Buckwalter and Khoja) in the
same figure to compare all approaches.

In figure 5, we can see clearly that our
approach provides different balance points
which can support the needs of most
applications. It provide states like (R0+, R1+,
R2+, R3+, R4+) which have the advantage of
high performance and outperform the
performance of most others stemmers.

States R7+, R6+, R5+ are high
performance and high accurate balance
points. Their accuracy (about 97%) can be
compared to high accurate rule-based
stemmers like khoja one, but we achieve this
accuracy with four times better
performance.

Rn states outperform Rn+ ones in
generality. We did not notice much difference in
accuracy in states R0, R1, R2, R3, R4 where the
generality affects mainly the performance (as we
do not cover solutions that represent elimination,
shadda, and Ealal cases).

Figure 5- Most important balance points in
our morphological analyzer and its position

according to Koja and Buckwalter analyzers.

An Application Oriented Arabic Morphological Analyzer

16

R5+, R6+, R7+ solve these problems

without great effect on the performance, and
still outperform other stemmers, because in
these states we look for the best solution
which is not one of these three difficult cases
for most Arabic words.

In addition, we provide R5, R6, R7, R8 in
which we try to include all right solutions
even those representing elimination and
shadda, which affects the accuracy. For
example, the accuracy of R7 (where we solve
all special cases) is about 87%. We can use
these states for learning systems or lexical
dictionaries where the stored data in these
systems help to correct the result and raise
the accuracy. But the main advantages here
are: the high performance (comparing to
dictionary-based system) and the
achievement of all correct solutions.

On the other hand, we provide state R9
which focus mainly on high accuracy and
high generality (we can conclude all the
correct solutions and only the correct solutions
with an accuracy exceeding 99%) i.e. we delete
most wrong solutions which are concluded at
state R8. This state represents the best choice
for applications like learning systems, corpus
building, machine translation and other
critical systems.

Table 7- The Accuracy of the
different states

The
State

The Accuracy of
Rn+

(Finding the best
solution only)

The Accuracy of Rnc
(Finding all possible

solutions)

R0 57.30% 54.30%
R1 64.70% 64.45%
R2 78.90% 75.50%
R3 97.30% 97.30%
R4 97.70% 97.60%
R5 97.20% 94.80%
R6 96.80% 94.80%
R7 96.90% 90.80%
R8 96.90% 87.10%
R9 99.90% 99.10%

Table 8- The Performance of the
different states (words/seconds)

The State

The Performance of

Rn+

(Finding the best
solution only)

The Performance of Rnc

(Finding all possible
solutions)

R0 78000 66000

R1 60500 53000

R2 51500 46000

R3 50000 43000

R4 43500 35000

R5 43000 34000

R6 39000 31000

R7 29000 23000

R8 19000 13000

R9 9000 1000

b- Contextual Correctness:

Moreover, we are interested in
contextual evaluation which is very
important in most applications. Table-9
shows that the contextual correctness of the
first solution in most states of our analyzer
is more than 96%. These values do not
differ a lot from the last values in accuracy
test because we found that more than 99.6%
of correct analyses are contextually correct
analysis.

In addition, we have tested the existence
of the contextual correct solution in the
output. The results are presented in the
Table -1.

Damascus University Journal Vol. (27) - No. (1) 2011 Sonbol- Ghneim- Desouki

17

Table 9- The Contextual Correctness of the

Different States

The
State

The Contextual

Correctness of Rn+

(The Contextual
Correctness

for the best solution)

The Contextual Correctness
of Rnc

(Finding the Contextual
Correct solution in the

solutions)

R0 56.90% 97.50%

R1 64.10% 97.50%

R2 78.88% 97.50%

R3 97.10% 97.50%

R4 97.50% 97.50%

R5 97.00% 97.57%

R6 96.60% 99.20%

R7 96.70% 99.67%

R8 96.60% 100.00%

c- Number of solutions & Failure
percentage:

To complete our evaluation, we do some
statistics about the number of solutions and
the failure percentage in each case. The failure
in R3 state is about 8%, because we do not
process any special cases. Such state is useful
in IR applications where we can accept these
values. The failure is decreased gradually with
the processing of special cases. We get
approximately zero-failure in R7 and R8
states where we test special cases.

On the other hand, the average number of
solutions (without diacritics) is not exceeding
3 solutions even when we look for a
maximum percentage of generality, contextual
correctness and accuracy (R8). We consider
this result as an advantage because we do not
need a big number of solutions to get the
correct ones.

Table 10- Statistics About the Number Of
Retrieved Solutions (without diacritics)

Number of Solutions for a Word
The

State
zero

one

two

three

more

Average

number of

solutions

R3 8% 83%

9% 1% 0% 1.11

R4 8% 84%

8% 0% 0% 1.09

R5 8% 84%

8% 0% 0% 1.09

R6 1% 78%

15%

6% 0% 1.27

R7 0% 61%

23%

12%

3% 1.59

R8 0% 56%

6% 8% 31% 2.53

6. Conclusion

In this paper, we propose Original Letters
Detection Algorithm as an auxiliary algorithm
to improve the accuracy and the performance
of any stemmer. Using this algorithm, we
present an Application Oriented Arabic
morphological analyzer which can satisfy the
needs of most kinds of applications including
those which need high performance, high
accuracy, or generality in solutions.

7. Future Works

Our future work will focus on the use of
this morphological analyzer in IR applications
to evaluate its performance in the relevant
tasks. In addition, we started to build an
Arabic Part of Speech Tagger, where using a
good morphological analyzer helps getting
better results.

An Application Oriented Arabic Morphological Analyzer

18

Appendix: sample outputs from Buckwalter system, Khoja system, and our system.

1- The input is /sakah/

B
uk

w
al

te
r

INPUT STRING:

LOOK-UP WORD: sAqAh

 SOLUTION 1: (sAqAhu) [sAqaY_1] sAqA/VERB_PERFECT+(null)/PVSUFF_SUBJ:3MS+hu/PVSUFF_DO:3MS

 (GLOSS): + give to drink + he/it <verb> it/him

 SOLUTION 2: (sAqAhu) [sAq-u_1] sAq/VERB_PERFECT+A/PVSUFF_SUBJ:3MD+hu/PVSUFF_DO:3MS

 (GLOSS): + drive/lead/direct + they (both) <verb> it/him

 SOLUTION 3: (sAqAhu) [sAq_1] sAq/NOUN+A/NSUFF_MASC_DU_NOM+hu/POSS_PRON_3MS

 (GLOSS): + leg + its/his two

K
ho

ja

ROOT

O
ur

 a
pp

ro
ac

h
(R

9)

details suf state root pattern type pre vocalized

//

////

////

2- The input is /astaf/

B
uk

w
al

te
r

INPUT STRING:

LOOK-UP WORD: >STf
 SOLUTION 1: (>aSoTaf~) [{iSoTaf~_1] >a/IV1S+SoTaf~/VERB_IMPERFECT
 (GLOSS): I + get in line/stand in formation +
 SOLUTION 2: (>aSoTaf) [{iSoTafaY_1] >a/IV1S+SoTaf/VERB_IMPERFECT
 (GLOSS): I + choose/select +

K
ho

ja

NOT STEMMED

O
ur

 a
pp

ro
ac

h
(R

9)

details suf state root pattern type pre vocalized
////

////

////

////

Damascus University Journal Vol. (27) - No. (1) 2011 Sonbol- Ghneim- Desouki

19

References

Al-Attar. S, Al-Bawab. M, and Al-Dakkak,
O.(2007) Arabic Lexical databas. ANLP,
ICTIS 2007, fes, Morocco.

Al-Bawab, M., Mrayati, M., Alam, Y.M., &
Al-Tayyan, M.H. (1994). A computerized
morpho-syntactic system of Arabic. The
Arabian Journal of Science and
Engineering, 19, 461 480. Published by
KFUPM, Dhahran, Saudi Arabia.

Al-Bawab M., mohtasseb H., Issa K., Sarf -
Arabic Morphology System.

http://sourceforge.net/projects/sarf/.

Al-Fedaghi, S. S., & Al- Anzi, F. S. (1989). A
new algorithm to generate root-pattern
forms. In Proceedings of the 11th National
Computer Conference (pp.391 400).
Published by KFUPM, Dhahran, Saudi
Arabia.

Al-Sughaiyer, I. and Al-Kharashi, I. (2004).
Arabic morphological analysis techniques:
A comprehensive survey. Journal of the
American Society for Information Science
and Technology, 55(3):189 213.

Buckwalter, T. (2002). Buckwalter Arabic
Morphological Analyzer Version 1.0,

Linguistic Data Consortium (LDC) catalog
number LDC2002L49 and ISBN 1-58563-
257-0.

Darwish, K. (2002). Building a shallow
Arabic morphological analyzer in one day.
In Proceedings of the Association for
Computational Linguistics (ACL-02), 40th
Anniversary Meeting (pp.47 54),
University of Pennsylvania, Philadelphia

Khoja, S., & Garside, R. (1999). Stemming
Arabic text. Computing Department,
Lancaster University, United Kingdom,

http://www.comp.lancs.ac.uk/computing/us
ers/khoja/stemmer.ps.

Larkey, L.S. and Connell, M. E. (2001)
Arabic information retrieval at UMass in
TREC-10. In TREC 2001. Gaithersburg:
NIST.

Sonbol. R, Ghneim, N. and Desouki, M.S.
(2008). Arabic Morphological Analysis: a
New Approach. 3d International
Conference on Information &
Communication Technologies: from
Theory to Applications - ICTTA'08.
Damascus, Syria.

.

Received 13/4/2010

http://sourceforge.net/projects/sarf/
http://www.comp.lancs.ac.uk/computing/us
ers/khoja/stemmer.ps

