
BENDING STRESSES AND MOMENT CAPACITY 

1 Elastic theory 
1. Uniaxial bending 
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The elastic design resistance for bending about one principal 
axis is determined in Clause 5.2.5.2 of EN 1993-1-1 as 
follows: 
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BENDING STRESSES AND MOMENT CAPACITY 

1 Elastic theory 
1. Uniaxial bending 
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For the asymmetrical crane 
beam section: 

Wel,y1 = Iy /z1 = modulus of  

 section for top flange. 
Wel,y2 = Iy /z2 = modulus of 

 section for bottom 
 flange.((MIN)) 
z1, z2 = distance from centroid 

 to top and bottom fibres. 
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1 Elastic theory 
2. Biaxial bending 

The maximum Stress at A or B 
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My,Ed = design bending 

 moment about the 
 y–y  axis. 
Mz,Ed = design bending 

 moment about the 
 z–z  axis. 
Wel,y = elastic section 

 modulus for the  
 y–y  axis. 
Wel,z = elastic section 

 modulus for the  
 z–z  axis. 

BENDING STRESSES AND MOMENT CAPACITY 



1 Elastic theory 
2. Biaxial bending 

For asymmetrical beam sections: 
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Should be satisfied 

BENDING STRESSES AND MOMENT CAPACITY 

In channel sections, the vertical 
load must be applied through the 
shear centre for bending in the free 
member to take place about the y–
y axis; otherwise, twisting and 
biaxial bending occurs. 
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1 Elastic theory 
2. Biaxial bending 

For asymmetrical beam sections: 

BENDING STRESSES AND MOMENT CAPACITY 

Gravity 

centre 

In unequal angles, bending takes 
place about the principle axes U-U 
and V-V  in the free member when 
the load is applied through the shear 
centre. 
When the angle is used as a purlin, 
the cladding restrains the member so 
that it bends about the y–y axis. 

bending stress 

y-y axis 

cladding 



2 Plastic theory 1. uniaxial bending 

BENDING STRESSES AND MOMENT CAPACITY 
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A2  the area of the beam section below the plastic neutral 

 axis (tensile) 

A1 the area of the beam section above the plastic neutral 

 axis (compressive) 

Since MP is a pure bending moment    

the total direct  load on the beam section must be zero. 
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2 Plastic theory 1. uniaxial bending 



we see that the plastic neutral axis divides the beam 
section into two equal areas. 
Clearly for doubly symmetrical sections or for singly 

symmetrical sections in which the plane of the bending 

moment is perpendicular to the axis of symmetry, the 

elastic and plastic neutral axes coincide. 
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2 Plastic theory 1. uniaxial bending 



The plastic moment, MP, can now be found by taking 

moments of the resultants of the tensile and compressive 

stresses about the Plastic neutral axis. These stress 

resultants act at the centroids C1 and C2 of the areas A1 

and  A2, respectively. 
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2 Plastic theory 1. uniaxial bending 



WPl is known as the plastic modulus of the cross section. 

Note that the elastic modulus, Wel , has two values for a 

beam of singly symmetrical cross section (bending takes 
place about the centroidal axis) whereas the plastic 
modulus is single-valued. (bending takes place about the 
equal area axis-plastic neutral axis) 

SHAPE FACTOR 
The ratio of the plastic moment of a beam to its yield 
moment is known as the shape factor. Thus 

where WPl is the plastic modulus and Wel is the minimum 
elastic section modulus, I/z1.  

2 Plastic theory -1. uniaxial bending 
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2 Plastic theory  
1. uniaxial bending 

The plastic design resistance for bending moment given in 
Clause 6.2.5(1) of EN 1993-1-1, 
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1 Introduction 
When the cross section of a steel shape 
is subjected to large compressive 
stresses, the thin plates that make up the 
cross section may buckle before the full 
strength of the member is attained if the 
thin plates are too slender.  
 When a cross sectional element 
fails in buckling, then the member 
capacity is reached. 
Consequently, local buckling 
becomes a limit state for the 
strength of steel shapes 
subjected to compressive 
stress.(induced by bending or 
axial Forces) 

Local buckling and cross-section classification 



1 Introduction 

Local buckling and cross-section classification 



1 Introduction 

- From all Previous examples, Considerable deformation of 
the cross-section is evident with the flanges being displaced 
out of their original flat shape. The web, on the other hand, 
appears to be comparatively undeformed.  
- The buckling has therefore been confined to certain 
plate elements and has not resulted in any overall lateral 
deformation of the member (i.e. its centroidal axis has not 
deflected).  

Local buckling and cross-section classification 



Local buckling and cross-section classification 

- Local buckling has the effect of reducing the load 
carrying capacity of columns and beams due to the reduction 
in stiffness and strength of the locally buckled plate 
elements. Therefore it is desirable to avoid local buckling 
before yielding of the member. 
- It is useful to classify sections based on their tendency to 
buckle locally before overall failure of the member takes 
place. 
- However, it should be remembered that local buckling 
does not always spell disaster. Local buckling involves 
distortion of the cross-section. There is no shift in the 
position of the cross-section as a whole as in global or overall 
buckling 

1 Introduction 



1 Introduction 

Local buckling and cross-section classification 

- Whether in the elastic or inelastic material range, 
 cross-sectional resistance and rotation capacity are 
 limited by the effects of local buckling.  
- Eurocode 3 accounts for the effects of local buckling 
 through cross-section classification. 
- The factors that affect local buckling (and therefore the 
 cross-section classification) are: 
 • Width/thickness ratios of plate components 
 • Element support conditions (outstand or internal 
        flanges, internal web) 
 • Material strength, fy 
 • Fabrication process (welded or hot rolled section- 
        NO Difference in EC3) 

 • Applied stress system .(stress distribution α, Ψ) 



cross-section classification EN 1993-1-1 Clause 5.5 
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Local buckling 
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Vent (Local buckling) 



MP MP 

My My 

Class  1  Class 2  

Class  3     Class  4 

My My 

MP 

MP 

My My 

MP MP 

My My 

MP 

MP 



cross-section classification EN 1993-1-1 Clause 5.5 

The EN 1993 definitions of the four beam cross sections are 
classified as follows in accordance with their behaviour in 
bending 
Class 1 cross sections are those that can form a plastic 
 hinge with rotation capacity required from plastic 
 analysis without reduction of the resistance. 
Class 2 cross sections are those that can develop their 
 plastic moment resistance but have limited rotation 
 capacity because of local buckling. 
Class 3 cross sections are those in which the elastically 
 calculated stress in the extreme compression fibre of 
 the steel member assuming an elastic distribution of 
 stresses can reach the yield strength, but local 
 buckling is liable to prevent development of the 
 plastic moment resistance. 



cross-section classification EN 1993-1-1 Clause 5.5 

Class 4 cross sections are those in which local buckling will 
 occur before the attainment of yield stress in one or 
 more parts of the cross section. 

Internal elements supported 
on both longitudinal edges 

Definition of compressed widths – flat widths: 

Outside elements attached on one 
edge with the other free 



cross-section classification EN 1993-1-1 Clause 5.5 
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cross-section classification EN 1993-1-1 Clause 5.5 

- Classification is made by comparing actual width-to-
 thickness ratios of the plate elements with a set of 
 limiting values, given in Table 5.2 of EN 1993-1-1. 
- A plate element is Class 4 (slender) if it fails to meet the 
 limiting values for a class 3 element. 
- The classification of the overall cross-section is 
 taken as the least favourable of the constituent 
 elements (for example, a cross-section with a class 3 
 flange and class 1 web has an overall classification of 
 Class 3). 



Table 5.2 (sheet 1 of 3): Maximum width-to-thickness ratios 
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Table 5.2 (sheet 2 of 3): Maximum width-to-thickness ratios 

Outstand compression flanges 



Table 5.2 (sheet 3 of 3): Maximum width-to-thickness ratios 
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cross-section classification EN 1993-1-1 Clause 5.5 

Definitions of α and Ψ for classification of cross-sections 

under combined bending and compression.  

Class 1 and 2 cross-sections 

1
2

1
2


y

Ed

y

c

fA

N

f

f


   

 

























































yww

Ed

yw

Ed

ww

f

f

wyw

Ed

ww

f

yw

Ed

w

ftC

N

ft

N

CC

rth

rt
Cft

N

CC

h
rt

ft

Nh

C
 

1
2

1

12

2

1

21

2

1

2

1

2

1







Class 3 cross-sections 

NEd/(2tw fy) 



Section 
classification 

Compression Bending 

Class 1, 2 Nc,Rd=A fy/γM0 Mc,Rd=Mpl=Wpl fy/γM0 

Class 3 Nc,Rd=A fy/γM0 Mc,Rd=Mel=Wel fy/γM0 

Class 4 Nc,Rd=Aeff  fy/γM0 Mc,Rd=Weff fy/γM0 

Example 1: cross-section classification under combined 
bending and compression 
A member is to be designed to carry combined bending and 
axial load. In the presence of a major axis ( y–y) bending 
moment and an axial force of 300 kN, determine the cross-
section classification of a 406 X 178 X 54 UKB in grade 
S275 steel  
 

Classification influences resistance 



h = 402.6 mm, b = 177.7 mm, tw= 7.7 mm 
tf= 10.9 mm, r = 10.2 mm, A = 6900 mm2 

Since tmax<16mm  Then fy=275Mpa 

First, classify the cross-section under 
the most severe loading condition of 
pure compression to determine 
whether anything is to be gained by 
more precise calculations. 
Cross-section classification under 
pure compression (clause 5.5.2) 

92.0
275

235235


yf
 ,Cf= (b – tw – 2r)/2 = 74.8 mm 

Cf/tf = 74.8/10.9 = 6.86 

Outstand flanges (Table 5.2, sheet 2): 



Cross-section classification under 
pure compression (clause 5.5.2) 

Outstand flanges (Table 5.2, sheet 2): 

Limit for Class 1 flange = 9ε= 8.32 
8.32 > 6.86 ; flange is Class 1 

Web – internal part in compression 
(Table 5.2, sheet 1): 
cw = h – 2tf – 2r = 360.4 mm 
cw/tw = 360.4/7.7 = 46.81 
Limit for Class 3 web = 42ε = 38.8 
38.8 < 46.81 ; web is Class 4 

Under pure compression, the overall cross-section 
classification is therefore Class 4. 
Calculation and material efficiency are therefore to be gained 
by using a more precise approach. 



Cross-section classification under 
combined loading (clause 5.5.2) 
Flange classification remains as Class 1. 

Web – internal part in bending and 
compression (Table 5.2, sheet 1): 
From Table 5.2 (sheet 1), for a Class 2 
cross-section: 
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Cross-section classification under combined loading 
(clause 5.5.2) 

Web – internal part in bending and compression (Table 5.2, 
sheet 1): 

2 Class is web

web2Classaforlimit
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81.4633.52
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113
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
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Overall cross-section classification under the combined 
loading is therefore Class 2. 

Consider combined bending and compression 
Firstly the section can be classified under the most severe loading 
condition of axial load only. If it is Class 4 under this condition then a 
more efficient classification may be obtained using a more precise 
calculation relating to the combined bending and axial loads.  



Local (plate) buckling – Class 4 cross-sections- EN 
1993-1-5: 2006§4.3 
  Effective areas for Class 4 compression elements 

Figure 4.1: Class 4 cross-sections - axial force 

Figure 4.2: Class 4 cross-sections - bending moment 

non effective zone 
Gross section Ac Effective section Ac,eff 

Gross section Ac Gross section Ac Effective section Ac,eff Effective section Ac,eff 

non effective zone 
non effective zone 

Additional bending 



Local (plate) buckling – Class 4 cross-sections- EN 
1993-1-5: 2006§4.3 
  Effective areas for Class 4 (effective width concept) 

For class 4 (slender) cross-sections, reduced (effective) 
cross-section properties must be calculated to account 
explicitly for the occurrence of local buckling prior to yielding. 

Small deflections in 
edge regions 

Regions of large 
deflections. 

Typical Buckling mode 

Non-uniform distribution 
of axial stresses in post-

buckling mode 

Assumed uniform stress 
distribution over an 
effective width beff  beff/2 

 beff/2 



Effective areas – Class 4 
Table 4.1: Internal compression elements 
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Effective areas – Class 4 
Table 4.2: Outstand compression elements 
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Effective areas – Class 4 

Notes 0n Table 4.1: 

-EN 1993-1-5: 2006§4.3 

b   is the appropriate width to be taken as follows (for     
 definitions, see Table 5.2 of EN 1993-1-1) 
bw =cw    for webs; (clear width between welds) 
b=cf        for internal flange elements (except RHS); 
b - 3 t     for flanges of RHS; 
cf            for outstand flanges; 
h            for equal-leg angles; 
h            for unequal-leg angles; 

 



Effective areas – Class 4 

Notes 0n Table 4.1: 

-EN 1993-1-5: 2006§4.3 

- for flange elements, 
the stress ratio Ψ should be 

based on the properties of 
the gross cross-section. 

- for web elements, the 
stress ratio Ψ should be 

found using a stress 
distribution obtained with 
the effective area of the 
compression flange and 
the gross area of the web 



Effective areas – Class 4 -EN 1993-1-5: 2006§4.3 

Compression stresses 

In most cases, the introduction of non-effective zones in a cross-
section, or part of a cross-section, will shift the position of the 

neutral axis for the ‘effective cross-section’. This introduces an 
additional bending moment due to the eccentricity of the 
applied axial load NEd. 



Effective areas – Class 4 -EN 1993-1-5: 2006§4.3 

Bending stresses 



Effective areas – Class 4 -EN 1993-1-5: 2006§4.3 
Example : Effective Cross-section Properties 
Using the design data given for the welded I-section indicated in 
the Figure shown, determine the section classification, and 
(i) the effective cross-sectional area when the section is subject to 
compression, 
(ii) the effective elastic section modulus when the section is 
subject to bending.  

Design data: 
Steel grade = S275 
Assume 6 mm fillet welds 
Assume that any shear lag effects, see EN 
1993-1-5: Clause 3.1(1), are negligible 

Solution: 
Gross cross-section properties 
Cross-sectional area A = ∑Ai= (450 × 10) + 
(980 × 8) + (350 × 10) = 15840 mm2 



Effective areas – Class 4 -EN 1993-1-5: 2006§4.3 
Example : Effective Cross-section Properties 

Solution: 

Distance to the centroid from the bottom flange 
zc =∑Ai zi / ∑Ai = [(450 × 10 × 995) + (980 × 8 × 500) + (350 × 10 × 
5)]/15840= 531,25 mm 

Second moment of inertia with respect to the y-y 
axis 
I yy= (450x103)/12+450x10x(1000-5-531.25)2 + 
9803x8/12+980x8x(531.25-500)2 + (350x103)/12+ 
350x10x(531.25-5)2= 2572.26 × 106 mm4  

EN 10025-2:2004 
S275 steel: For t ≤ 16 mm fy = 275 MPa 
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Effective areas – Class 4 -EN 1993-1-5: 2006§4.3 
Example : Effective Cross-section Properties 

Solution: 

    

(i)   Consider compression 

 

Web: internal compression part- Table 5.2(1)-  

 

c = [1000 - 20 – (2 x 6)] = 968 mm      c /t w = 968/8 = 121 

 

42ε = (42 × 0.92) = 38.64 c/t w > 42ε ∴ The web is Class 4 

 

Upper flange: outstand compression flanges - 
  Table 5.2(2)-  

 

c = [450 – 8 – (2 × 6)]/2 = 215 mm 
c /t f = 215/10 = 21.5 

Lower flange: outstand compression flanges  
 c = [350 – 8 – (2 × 6)]/2 = 165 mm  
c /t f = 165/10 = 16.5 

14ε = (14 × 0.92) = 12.55 c/t f > 14ε Both flanges 
are Class 4 

∴ Section is Class 4 



Effective areas – Class 4 -EN 1993-1-5: 2006§4.3 
Example : Effective Cross-section Properties 

    

(i)   Consider compression 

      

Effective area, Aeff 

 

Assume the cross-section is subject only to stresses due to uniform axial 

compression 

(EN 1993-1-5:2006 Clauses 4.3 & 4.4) 

 

Ac,eff = ρAc plate slenderness 
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Table 4.1 For internal compression elements 
(WEB) with uniform compression  

ψ = σ2/σ1 = 1,0 and k σ = 4,0 
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Effective areas – Class 4 -EN 1993-1-5: 2006§4.3 
Example : Effective Cross-section Properties 

    

(i)   Consider compression 

        

ψ = σ2/σ1 = 1,0 and k σ = 0.43 

tb.
...
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p 0580
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Reduction factor 

beff = (0,391 × 968) = 378,49 mm 

50% allocated equally from both ends (i.e. 189,25 from the welds) 

Ac,eff,w = (378,49 + 6,0 + 6,0) × 8,0 = 3123,9 mm2  
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Table 4.2 For outstand compression elements with 
uniform compression  
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(i)   Consider compression 
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beff = (0.84 × 165) = 138.6 mm 

Ac,eff,tf = 2 × [(146,42 + 6,0 + 4,0) × 10,0] = 3128,4 mm2 1
4
6
.4

2
 

1
4
6
.4

2
 

2
0
 

For the lower flange: 

Ac,eff,bf = 2 × (138,6 + 6,0 + 4) × 10,0 = 2972,0 mm2 

1
3
8
.6

 

1
3
8
.6

 

2
0
 

beff = (0.681 × 215) = 146.42 mm 
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(i)   Consider compression 

        

Effective section properties: 

Aeff = (3123,9 + 3128,4 + 2972) = 9224,3 mm2 

Location of centroid 

Zeff = [(3128,4 × 995) + (195.25 x 8× (1000-
10-195.25/2))+ (195.25 x 8 × (195.25/2+10)) 
+ (2972 × 5)]/9224,2=508.4mm  
 

 

Shift of the centroid: 

eNy = 531,25 - 508,40 = 22,85 mm 

 

This shift results in an additional bending moment 
which should be added to the primary bending moment 
when carrying out verifications in accordance with EN 
1993-1-1: Clause 6.2.2.3(4), i.e. ΔMEd = NEdeN  
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(ii) Consider bending  

          

Upper flange: outstand compression flanges - 
Table 5.2(2)-  
c = [450 – 8 – (2 × 6)]/2 = 215 mm 
c /t f = 215/10 = 21.5 
14ε = (14 × 0.92) = 12.55 c/t f > 14ε 
compression flange is Class 4 

Web: internal compression part 
The classification of the web is dependent on the 
stress ratio ψ, see EN 1993-1-1: Table 5.2(1). 
Since the flanges provide the largest contribution 
to the bending stiffness, it is recommended that 
the compression flange is first reduced before 
completing the stress distribution over the depth  
of the section. 
The cross-section considered when assessing the stress ratio from EN 1993-1-3: 
Table 5.2 is shown in the Figure. The effective width of the top flange is equal 
to 312,8 mm as before.  
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(ii) Consider bending  

          

Cross-sectional area: 
A = (312,8 × 10) + (980 × 8) + (350 × 10) = 
14468 mm2  

Distance to the centroid from the bottom 
flange: 
z = [(312,8 × 10 × 995) + (980 × 8 × 500) + 
(350 × 10 × 5)]/14468 = 487,27 mm 

The cross-section to be considered when assessing 
the stress ratio is as shown in the Figure. The 
stresses σ1 and σ2 are proportional to the distance 
from the centroid. 
The stress ratio is based on the values to the 
extreme fibres of the web plate between the welds, 
i.e  

 

ψ = - 471,27/496,73 = - 0,949 > - 1,0 
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(ii) Consider bending  

             

EN 1993-1-1:2005: Table 5.2: Class 3 limiting value: 
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c/t w =121> 108.3 ∴ The web is Class 4 

Section is Class 4 

 

Effective section modulus 

The effective section modulus (Weff) is determined 
assuming that the cross-section is subject only to 
bending stresses or combined bending and 
compression. Assuming that shear lag is negligible, 
the tension flange is fully effective and the web is 
subject to combined bending and compression.  

Using the stress ratio ψ = - 0,949 as a first approximation, the buckling coefficient 
kσ can be obtained from EN 1993-1-5: Table 4.1.  
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(ii) Consider bending  

               

Buckling factor kσ = 7,81 - 6,29ψ + 9,78ψ 2 where ψ ≈ - 0,949 
kσ = 7,81 + (6,29 × 0,949) + (9,78 × 0,9492) = 22,59 
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beff = ρbc = ρ b /(1- ψ) = (0,908 × 968,0)/(1+ 0,949)  
      = 451,97 mm  

The beff value (451,97 mm) is allocated to the 
compression zone in accordance with 
EN 1993-1-5: Table 4.1, i.e 

be1 = 0,4beff = (0,4 × 451,97) = 180,79 mm 
be2 = 0,6beff = (0,6 × 451,97) = 271,18 mm 

x = 1000 - (20 + 186,79 + 271,18 + 477,27) = 44,76 mm 
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(ii) Consider bending  

               

Cross-sectional area 
Aeff = [3128 + 3500 + (980 × 8) - (44,76 × 8)]= 
 14109,92 mm2 

Location of centroid 
zeff = [(3128 × 995) + (186,79 × 8 × 896,61) 
       + (748,45 × 8 × 384,23) + (3500 × 5)]/14109,92 
     = 479,83 mm  

Second moment of area about the y-y axis: 
I yy= (312.8x103)/12+312.8x10x(1000-5-479.83)2 +     
 186.793x8/12+186.79x8x(186.79/2+10-1000 + 
 479.83)2 + (748.453x8)/12+ 748.45x8x 
 (748.45/2+10-479.83)2+350x103/12 + 350x10x 
 (479.83-5)2  = 2217.12 × 106 mm4  

z to the mid-point of the top flange = (995,0 - 479,83) = 515,17 mm 
z to the mid-point of the bottom flange = (479,83 - 5,0) = 474,83 mm 
Weff,y,top flange = (2217,12 × 106)/515,17 = 4,30 × 106 mm3 
Weff,y,bottom flange = (2217,12 × 106)/474,83 = 4,67 × 106 mm3 
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An improved second approximation can be made by 
repeating the calculations using a stress ratio ψ 
based on the section properties from Figure shown 

Summary: Effective section properties 
Cross-sectional area (based on compression, see EN 
1993-1-5: Clause 4.3(3)): 
Aeff = 9224,2 mm2 
Shift of the centroid (based on compression, see EN 
1993-1-1: Clause 6.2.9.3.(2)): 
eNy = 22,85 mm 
Minimum elastic section modulus (based on bending, 
see EN 1993-1-5: Clause 4.3(4)): 
Weff,y,min = 4,30 × 106 mm3  
 



Effective properties of cross-sections with Class 3 
webs and Class 1 or 2 flanges -EN 1993-1-1: 2005§ 6.2.2.4 

However, EN 1993-1-1: 2005 § 6.2.2.4 makes special 
allowances for cross-sections with Class 3 webs and Class 1 
or 2 flanges by permitting the cross-sections to be classified 
as effective Class 2 cross-sections. 

Generally, a Class 3 cross-section (where the most slender 
element is Class 3) would assume an elastic distribution of 
stresses, and its bending resistance would be calculated 
using the elastic modulus Wel.  

fy 

fy compression 

Tension 

Plastic Neutral  
Axis 

Neglected 
ineffective area 
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Example : cross-section resistance in 
bending 
A welded I section is to be designed 
in bending. The proportions of the 
section have been selected such that 
it may be classified as an effective 
Class 2 cross-section. The chosen 
section is of grade S275 steel, and 
has two 200 x16 mm flanges, an 
overall section height of 600 mm and 
a 6 mm web. The weld size (leg 
length) s is 6.0 mm. Assuming full 
lateral restraint, calculate the bending 
moment resistance. 

b = 200.0 mm 
tf= 16.0 mm 
h = 600.0 mm 
tw= 6.0 mm 
s = 6.0 mm 
Wel, y = 2 124 838 mm3 
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webs and Class 1 or 2 flanges -EN 1993-1-1: 2005§ 6.2.2.4 

Section properties 

b = 200.0 mm 
tf= 16.0 mm 
h = 600.0 mm 
tw= 6.0 mm 
s = 6.0 mm 
Wel, y = 2 124 838 mm3 

Since tmax=16mm  Then fy=275N/mm2 

E = 210 000 N/mm2 

Cross-section classification 

92.0
275

235235


yf


Cf= (b – tw – 2s)/2 = 91.0 mm 

Cf/tf = 91/16= 5.69 

Outstand flanges (Table 5.2, sheet 2): 

Limit for Class 1 flange = 9ε= 8.32 
8.32 > 6.86 ; flange is Class 1 
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b = 200.0 mm 
tf= 16.0 mm 
h = 600.0 mm 
tw= 6.0 mm 
s = 6.0 mm 
Wel, y = 2 124 838 mm3 

Cross-section classification 

Web – internal part in bending (Table 
5.2, sheet 1): 
cw = h – 2tf – 2s = 556.0mm 
cw/tw = 556/6= 92.7 
Limit for Class 2 web = 83ε = 76.4 
Limit for Class 3 web = 124ε = 114.6 
114.6> 92.7>76.4; web is Class 3 

Overall cross-section classification is 
therefore Class 3. 
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P.N.A 

=110.4mm 

=110.4mm 

Z
 p

 

bxtf+2x20xtwxεxtw+sxtw
=bxtf+(h-tf-zp)xtw 

110.4x2x6+6x6=(600-
16-zp)x6 
zp=357.2mm 

Plastic neutral axis of effective section 

Plastic modulus of effective section 

Wpl,y,eff = b tf (zp-0.5tf)+b tf (h-zp-0.5tf)+ tw s (zp-tf-0.5s)  + 
 tw (h-zp-tf)(h-zp-tf)/2+(20εtw) tw (20εtw)/2+(20εtw) tw 
 [zp-s-tf-(20εtw)/2] 
Wpl,y,eff = b tf (h-tf)+0.5 tw (h-zp-tf)

2 + (20εtw) tw [zp-s-tf]+   
  tw s (zp-tf-0.5s)= 2 257 326 mm3  

h
=

6
0
0
m

m
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P.N.A 

=110.4mm 

=110.4mm 

h
=

6
0
0
m

m
 

Z
 p

 

Plastic Bending resistance of cross-section  

Elastic section modulus  
Wel,y =[ b h3/12-(b-tw) (h-2tf)

3/12]/(0.5h)= 2 124 838mm3  

Mc,y,Rd = Mpl,y,Rd  

=Wpl,y,eff fy/γM0 

for effective class 2 
sections 
Mc,y,Rd =2257326x275/1 
 =620.76 kN.m 

Mc,y,Rd = Mel,y,Rd  =Wel,y fy/γM0=2124838x275/1=584.3kN.m 

Elastic Bending resistance of cross-section  

Therefore, for the chosen section, use of the effective Class 
2 plastic properties results in an increase in bending moment 
resistance of approximately 6%. 


