BENDING STRESSES AND MOMENT CAPACITY

1 Elástic theory

1. Oniaxial bending

From the Mechanics of

Material course(Symmetrical bending)
Max stress $\quad f_{b t}=f_{b c}=\frac{M_{y}}{I_{y}} Z=\frac{M_{y}}{W_{e f y}}$
Moment capacity $\quad M_{c}=\sigma_{b} W_{\text {el, }}$

$$
W_{e l, y} \text { elastic section modulus about }
$$ the majour axis

Section

Stress

The elastic design resistance for bending about one principal axis is determined in Clause 5.2.5.2 of EN 1993-1-1 as follows:

$$
M_{e c i, k d}=\frac{W_{e l} f_{y}}{\gamma_{M 0}}
$$

BENDING STRESSES AND MOMENT CAPACITY

1 Elástic theory

1. Uniaxial bending

For the asymmetrical crane beam section:
$W_{e l, y 1}=I_{y} / z_{1}=$ modulus of section for top flange.
$W_{\text {el }, 2}=I_{y} / Z_{2}=$ modulus of section for bottom flange.((MIN))
$z_{1}, z_{2}=$ distance from centroid to top and bottom fibres.
Stress at top
Stress at bottom

$$
f_{b c}=\frac{M_{v}}{W_{c o v i s}}
$$

Moment
capacity: $M_{e l, R_{d}} \approx \frac{W_{e l, v_{2}} f_{y}}{\gamma_{M 0}}$

$$
f_{x \rightarrow t}=\frac{\bar{M}_{y}}{W_{c l, y 2}}
$$

BENDING STRESSES AND MOMENT CAPACITY

1 Elastic theory
2. Bíaxial bending
$M \hat{y}, E d=$ design bending moment about the $y-y$ axis.
$M z, E d=$ design bending moment about the $z-z$ axis.
Wel, y = elastic section modulus for the $\Delta y-y$ axis.

Wel, $2=$ elastic section modulus for the $z-z$ axis.
The maximum Stress at A or B

$$
f_{A}=f_{B}=\frac{M_{y, E l}}{W_{e l, y}}+\frac{M_{z, E l}}{W_{e l, z}} \leq \frac{f_{y}}{\gamma_{M 0}}
$$

BENDING STRESSES AND MOMENT CAPACITY

1 Elástic theory
2. Biaxial bending

The elastic design resistance for bending
$M_{e l, y, k d r}=\frac{W_{e l, y} f_{y}}{\gamma_{M 0}}, \quad M_{e l, z, R d}=\frac{W_{e l, z} f_{y}}{\gamma_{M Q}}$
$\frac{M_{y, E d}}{M_{, ~, ~}}+\frac{M_{z, E d}}{M_{\text {. }}} \leq 1$ Should be satisfied (b)
For asymmetrical beam sections: In channel sections, the vertical load must be applied through the shear centre for bending in the free member to take place about the y -
 y axis; otherwise, twisting and biaxial bending occurs.

BENDING STRESSES AND MOMENT CAPACITY

1 Elastic theory
2. Bíaxial bending

For asymmetrical beam sections: In unequal angles, bending takes place about the principle axes $U-U$ and $V-V$ in the free member when the load is applied through the shear centre.
When the angle is used as a purlin, the cladding restrains the member so
 that it bends about the y-y axis.

BENDING STRESSES AND MOMENT CAPACITY

 2 Plastic theory 1. unfíaxial bending

2 Plastic theory 1. uniaxial bending

A_{2} the area of the beam section below the plastic neutral axis (tensile)
A_{1} the area of the beam section above the plastic neutral axis (compressive)
Since M_{p} is a pure bending moment the total direct load on the beam section must be zero.

$$
\begin{aligned}
& f_{b t} \times A_{2}=f_{b c} \times A_{1} \Rightarrow f_{y} \times A_{2}=f_{x} \times A_{1} \Rightarrow A_{2}=A_{1} \\
& \text { if } A=A_{1}+A_{2} \Rightarrow A_{2} \leqslant A_{1}=\frac{A}{2}
\end{aligned}
$$

2 Plastic theory 1. uniaxial bending-

We see that the plastic neutral axis divides the beam section into two equal areas.
Clearly for doubly symmetrical sections or for singly symmetrical sections in which the plane of the bending moment is perpendicular to the axis of symmetry, the elastic and plastic neutral axes coincide.

2 Plastic theory 1. uniaxial bending

The plastic moment, M_{p}, can now be found by taking moments of the resultants of the tensile and compressive stresses about the Plastic neutral axis. These stress resultants act at the centroids C_{1} and C_{2} of the areas A_{1} and A_{2}, respectively.

$$
\begin{gathered}
M=f_{y} \times A_{2} \times \bar{z}_{2}+f_{y} \times A_{1} \times z_{1} \Rightarrow M=f_{y} \times \frac{A}{2} \times\left(\bar{z}_{1}+\bar{z}_{2}\right) \\
M_{p}=W_{p l} \times f_{y} \text { where } W_{p l}=\frac{A}{2} \times\left(\bar{z}_{1}+\bar{z}_{2}\right)
\end{gathered}
$$

2 Plastic theory -1. uniáxial bendińg

$$
W_{p l}=\Sigma \text { first moment of area about the plastic NA) }
$$

$W_{P I}$ is known as the plastic modulus of the cross section. Note that the elâstic modutừ, $W_{e / \text {, }}$ has two values for a beam of singly symmetrical cross section (bending takes place about the centroidal axis) whereas the plastic modulus is single-valued. (bending takes place about the equal area axis-plastic neutral axis) SHAPE FACTOR
The ratio of the plastic moment of a beam to its yield moment is known as the shape factor. Thus

$$
\text { Shape factor }=\frac{M_{p}}{M_{y}}=\frac{W_{p l} \times f_{y}}{W_{e l} \times f_{y}}=\frac{W_{p l}}{W_{e l}}
$$

where $W_{P I}$ is the plastic modulus and W_{el} is the minimum elastic section modulus, $\mathrm{I} / \mathrm{z}_{1}$.

2 Plastic theory

1. uniáaxial bending

The plastic design resistance for bending moment given in Clause 6.2.5(1) of EN 1993-1-1,

$$
M_{p l, R d}=\frac{W_{p l} f_{y}}{\gamma_{M 0}}
$$

Local búckling and cross-section classification
1 Introduction
When the cross section of a steet shape is subjected to large compressive stresses, the thin plates that make up the cross section may buckle before the full strength of the member is attained if the thin plates are too slender.
When a cross sectional element faiils in buckling, then the member capacity is reached. Consequently, tocal buckling becomes a limit state for the strength of steel shapes súbjected to compressive stress.(induced by bending or axial Forces)

Local búckling and cross-section classification

1 Introduction

Q- From all Previous examples, Considerable deformation of the cross-sectionis evident with the flanges being displaced out of their original flat shape. The web on the other hand, appears to be comparatively undeformed.
\square-The buckling has therefore been confined to certain plate elements and has not resulted in any overall lateral deformation of the member (i.e. its centroidal axis has not deflected).

Local buckling and cross-section classification

1 Introduction

ㅁ. Local buckling has the effect of reducing the load carrying capacity of columns and beams due to the reduction in stiffness and strength of the locally buckled plate elements. Therefore it is desirable to avoid local buckling before yielding of the member.
\square-It is useful to classify sections based on their tendency to buckle locally before overallf failure of the member takes place.

- However, it should be remembered that local buckling does not always spell disaster. Local buckling involves distortion of the cross-section. There is no shift in the position of the cross-section as a whole as in global or overall buckling

Local būckling and cross-section classification

1 Introduction

D. Whether in the elastic or inelastic material range, cross-sectional resistance and rotation capacity are limited by the effects of local buckling.

- Eurocode 3 accounts for the effects of local buckling through cross-section classification.
- The factors that affect local buckling (and therefore the cross-section classification) are:
- Width/thickness ratios of plate components
- Element support conditions (outstand or internal flanges, internal web)
- Material strength, f
- Fabrication process (welded or hot rolled sectionNO Difference in EC3)
- Applied stress system.(stress distribution α, Ψ)

cross-section classification EN 1993-1-1 Colause 5.5

Class 3-local buckling prevents attainment of full plastic moment

Class 4-local-bücklingpprevents attainment of yield moment

Rotation ($\boldsymbol{\theta}$)

Class 1 cross sections are those that can form a plastic hinge with rotation capacity required from plastic analysis without reduction of the resistance.
Class 2 cross sections are those that can develop their plastic moment resistance but have limited rotation capacity because of local buckling.
Class 3 cross sections are those in which the elastically calculated stress in the extreme compression fibre of the steel member assuming an elastic distribution of stresses can reach the yield strength, but local buckling is liable to prevent development of the plastic moment resistance.
cross-section classification EN 1993-1-1 Clause 5.5
Class 4 cross sections are those in which local buckling will occur before the attainment of yield stress in one or more parts of the cross section.
Definition of compressed widths - flat widths:

Outside elements attached on one edge-with the other free

Internal elements supported on both longitudinal edges
cross-section classification EN 1993-1-1 Clause 5.5

cross-section classification EN 1993-1-1 Clause 5.5
\square - Classification is made by comparing actual width-tothickness ratios of the plate elements with a set of limiting values, given in Table 5.2 of EN 1993-1-1.

- A plate element is Class 4 (slender) if it fails to meet the dimiting values for a class 3 element.
\square - The classification of the overall cross-section is taken as the least favourable of the constituent elements (for example, a cross-section with a class 3 flange and class 1 web has an overall classification of Class 3)

Table 5.2(sheet 1 of 3): Maximum width-to-thickness ratios

Class | Part subject to |
| :---: |
| bending |

Table 5.2 (sheet 2 of 3): Maximum width-to-thickness.ratios

Outstand compression flanges

Class	Part subject to compression	Part subject to bending and compression	
		Tip in compression	Tip in tension
Stress distribution in parts. (compression positive)	$\frac{\square+}{1+c}$		
≈ 1	$\mathrm{c} / \mathrm{t} \leq 9 \mathrm{c}$	$\mathrm{c} / \mathrm{t} \leq \frac{9 \varepsilon}{\alpha}$	$\mathrm{c} / \mathrm{t} \leq \frac{9 \varepsilon}{\alpha \sqrt{\alpha}}$
2	$\mathrm{c} / \mathrm{t} \leq 10 \varepsilon$	$\mathrm{c} / \mathrm{t} \leq \frac{10 \varepsilon}{\alpha}$	$\operatorname{c/t} \leq \frac{10 \varepsilon}{\alpha \sqrt{\alpha}}$
Stress, distribution in parts (compression positive)			
3	$c / t \leq 14 \varepsilon$	$\begin{gathered} \mathrm{c} / 1 \\ \text { For } \mathrm{k}_{\mathrm{o}} \\ \hline \end{gathered}$	$\begin{aligned} & 21 \varepsilon \sqrt{k_{\sigma}} \\ & \text { EN 1993-1-5 } \end{aligned}$

Table 5.2 (sheet 3 of 3): Maximum width-to-thickness.ratios

Tubular sections

Class	Section in bending and/or compression
1	$\mathrm{~d} / \mathrm{t} \leq 50 \varepsilon^{2}$
2	$\mathrm{~d} / \mathrm{t} \leq 70 \varepsilon^{2}$
3	$\mathrm{~d} / \mathrm{t} \leq 90 \varepsilon^{2}$
	NOTE For $\mathrm{d} / \mathrm{t}>90 \varepsilon^{2}$ see EN 1993-1-6. See BS5950:2000

cross-section classification EN 1993-1-1 Clause-5.5
$\alpha=\frac{\hat{C}}{C_{w}}\left[\frac{h}{2}+\frac{1}{2} \frac{N_{E d}}{t_{w} f_{y}}-\left(t_{f}+r\right)\right]=\frac{1}{2}\left[\frac{h}{C_{w}}+\frac{\lambda}{C_{w}} \frac{N_{E d}}{t_{w} f_{y}}-\frac{2}{C_{w}}\left(t_{f}+r\right)\right]$

$$
\begin{aligned}
& \alpha=\frac{1}{2}\left[\frac{h-2\left(t_{f}+r\right)}{C_{w}} \frac{N_{E d}}{C_{w}} \frac{t_{w} f_{y}}{L_{w}}\right]= \\
& \alpha=\frac{1}{2}\left[1+\frac{N_{E d}}{C_{w} t_{w} f_{y}}\right]
\end{aligned}
$$

$$
\psi=\frac{2 f_{c}}{f_{y}}-1=\frac{2 N_{E d}}{A f_{y}}-1
$$

Class 1 and 2 cross-sections
Definitions of a and Ψ for classification of cross-sections under combined bending and compression.

Classification influences resistance

Section classification	Compression	Bending
Class 1, 2	$\mathrm{N}_{\mathrm{c}, \mathrm{Rd}}=\mathrm{A} \mathrm{f}_{\mathrm{y}} / \gamma_{\mathrm{MO}}$	$\mathrm{M}_{\mathrm{c}, \mathrm{Rd}}=\mathrm{M}_{\mathrm{pl}}=\mathrm{W}_{\mathrm{pl}} \mathrm{f}_{\mathrm{y}} / \gamma_{\mathrm{MO}}$
Class 3	$\mathrm{N}_{\mathrm{c}, \mathrm{Rd}}=\mathrm{A} \mathrm{f}_{\mathrm{y}} / \gamma_{\mathrm{MO}}$	$\mathrm{M}_{\mathrm{c}, \mathrm{Rd}}=\mathrm{M}_{\mathrm{el}}=\mathrm{W}_{\mathrm{el}} \mathrm{f}_{\mathrm{y}} / \gamma_{\mathrm{MO}}$
Class 4	$\mathrm{N}_{\mathrm{G}, \mathrm{Rd}}=\mathrm{A}_{\mathrm{eff}} \hat{\mathrm{f}}_{\mathrm{y}} / \gamma_{\mathrm{MO}}$	$\mathrm{M}_{\mathrm{c}, \mathrm{Rd}}=\mathrm{W}_{\text {eff }} \mathrm{f}_{\mathrm{y}} / \gamma_{\mathrm{MO}}$

Example 1: cross-section classification úhder combined bending ând compression
A member is to be designed to carry combined bending and axiaf load. In the presence of a major axis $(-y-y)$ bending moment and an axial force of 300 kN , determine the crosssection classification of a $406 \times 178 \times 54$ UKB in grade S275 steet
$h=402.6 \mathrm{~mm}, b=177.7 \mathrm{~mm}, t_{\mathrm{w}}=7.7 \mathrm{~mm}$ $t_{\mathrm{F}}=10.9 \mathrm{~mm}, r=10.2 \mathrm{~mm}, A=6900 \mathrm{~mm}^{2}$

Since $\mathrm{t}_{\max }<16 \mathrm{~mm}$ Then $\mathrm{f}_{\mathrm{y}}=275 \mathrm{Mpa}$ First, classify the cross-section under the most severe loading condition of pure compression to determine whether anything is to be gained by more precise calculations.
Cross-section classification under pure compression (clause 5.5.2)
 Outstand flanges (Table 5.2 , sheet 2):

$$
\varepsilon=\sqrt{\frac{235}{f_{y}}}=\sqrt{\frac{235}{275}}=0.92 \quad, \mathrm{C}_{\mathrm{f}}=\left(\mathrm{b}-\mathrm{t}_{\mathrm{w}}-2 \mathrm{r}\right) / 2=74.8 \mathrm{~mm}
$$

$$
C_{f} / t_{f}=74.8 / 10.9=6.86
$$

Cross-section classification undér pure compression (clause 5.5.2) Outstand flanges (Table 5.2 , sheet 2): Limit for Class 1 flange $=9 \varepsilon=8.32$ $8.32>6.86$; flange is Class 1 Web - internal part in compressión (Table 5.2 , sheet 1):
$\mathrm{c}_{\mathrm{w}}=\mathrm{h}-2 \mathrm{t}_{\mathrm{f}}-2 \mathrm{r}=360.4 \mathrm{~mm}$
$c_{w} / t_{w}=360.4 / 7.7=46.81$
Limit for Class 3 web $=42 \varepsilon=38.8$ $38.8<46.81$; web is Class 4
Under pure compression, the overall cross-section classification is therefore Class 4.
Calculation and material efficiency are therefore to be gained by using a more precise approach.

Cross-séction classificátion under combined loading (clause 5.5.2) Flange classification remains as Class 1.

Web - internal part in bending and compression (Table 5.2, sheét 1): From Table 5.2 (sheet 1), for a Class 2 cross-section:
when $\alpha>0.5 \frac{C_{w}}{t_{w}}<\frac{456}{13 \alpha-1}$
when $\alpha \leq 0.5 \frac{C_{w}}{t_{w}}<\frac{41.5 \varepsilon}{\alpha}$

$$
\alpha=\frac{1}{2}\left[1+\frac{N_{E d}}{\widetilde{C}_{w} t_{w} f_{y}}\right]=\frac{1}{2}\left[1+\frac{300000}{360.4 \times 7.7 \times 275}\right]=0.7
$$

Cross-section classificátion undér combined loading

 (clause 5.5.2)Web - internal part in bending and compression (Table 5.2 sheet 1):
\therefore limit for a Class 2 web $=\frac{456 \varepsilon}{13 \alpha-1}=52.33$
$52.33>46.81 \quad \therefore$ web is Class 2
Qverall cross-section classification under the combined loading is therefore Class 2.

Consider combined bending and compression
Firstly the section can be classified under the most severe loading condition of axial load only. If it is Class 4 under this condition then a more efficient classification may be obtained using a more precise calculation relating to the combined bending and axial loads.

Local (plate) buckling - Class 4 cross-sections- EN

 1993-1-5: 2006 § 4.3Effective areas for Class 4 compression elements

Additional bending

Figure 4.1: Class 4 cross-sections - axial force

Gross section A_{c} 送fective section $A_{c, \text { eff }}$ Gross section A_{c} Effective section $A_{c, \text { eff }}$ Figure 4.2: Class 4 cross-sectións - bending moment

Local (plate) buckling:- Class 4 cross-sections- EN 1993-1-5: 2006 § 4.3

Effective areas for Class 4 (effective width concept)

For class 4 (slender) cross-sections, reduced (effective) cross-section properties must be calculated to account explicitly for the occurrence of local buckling prior to yielding.

Typical Buckling mode

Effective areas - Class 4

Table, 4.1: Internal compression elements

$$
\sigma_{c r}=\frac{k_{\sigma} \pi^{2} E}{12\left(1-v^{2}\right)}\left(\frac{t}{\bar{b}}\right)^{2}
$$

$$
\text { for } \bar{\lambda}_{p} \leq 0.673
$$

$\hat{\rho}=\frac{\bar{\lambda}_{p}-0.055(3+\psi)}{\bar{\lambda}^{2}} \leq$

$$
\leq 1.0 \text { for } \bar{\lambda}_{p}>0.673 \text {, where }(3+\psi) \geq 0 . \bar{\lambda}_{p}=\sqrt{\frac{f_{y}}{\sigma_{c r}}}=\frac{\bar{b} / t}{28.4 \varepsilon \sqrt{k_{\sigma}}}
$$

Effective areas - Class 4

Table 4.2: Outstand compression elements

$\rho=1.0$

$$
\text { for } \bar{\lambda}_{p} \leq 0.748
$$

$$
\text { for } \bar{\lambda}_{p}>0.748
$$

Table 4.2

Effective areas - Class 4 -EN 1993-1-5:2006§ 4.3
Notes On Table 4.1:
\bar{b} is the appropriate width to be taken as follows (for definitions, See Table 5.2 of EN-1993-1-1)
$b_{w}=c_{w}$ for webs; (clear width between welds) $b=c_{f}$ for internal flange elements (except RHS); $b-3 t$ for flanges of RHS;
$\begin{array}{ll}c_{f} & \text { for outstand flanges; } \\ h & \text { for equal-leg angles; } \\ h & \text { for unequal-leg angles; }\end{array}$

Effective areas - Class 4 -EN 1993-1-5:2006§ 4.3
Notes On Table 4.1:

Q- for flange elements, the stress ratio Ψ should be based on the properties of the gross cross-section.
\square - for web elements, the stress ratio Ψ should be found using a stress distribution obtained with the effective area of the compression flange and the gross area of the web

Effective areas - Class 4 -EN 1993-1-5:2006§ 4.3

In most cases, the introduction of non-effective zoneśs in a crosssection, or part of a cross-section, will shift the position of the neutral axis for the 'éffective cross-section? This introduces an additional bending moment due to the eccentricity of the applied axial load N_{Ed}.

Compression stresses

Effective areas - Class 4 -EN 1993-1-5:2006§ 4.3

Bending stresses

Effective areas - Class 4 -EN 1993-1-5:2006§ 4.3

Example : Effective Cross-Section Properties
Using the design data given for the-welded F -section indicated in \approx the Figure shown, determine the section classification, and
(4) the effective cross-sectional area when the section is subject to compression,
(ii) the effective elastic section modulus when the séction is subject to bending.
Design data:
Steel grade $=$ S275
Assume 6 mm fillet wêlds
Assume that any shear lag effects, see EN 1993-1-5: Clause 3.1 (1) ${ }_{i}$ are negligible

Solution:

Gross cross-section properties
Cross-sectional area $A=\Sigma \mathrm{Ai}=(450 \times 10)+$
$(980 \times 8)+(350 \times 10)=15840 \mathrm{~mm}^{2}$

Effective areas - Class 4 -EN 1993-1-5:2006 4.3

 Example : Effective Cross-Section Properties
Solution:

Distance to the centroid from the bottom flange $\Sigma_{c}=\sum \mathrm{A}_{i} \mathrm{z}_{i} / \sum \mathrm{A}_{i}=[(450 \times 10 \times 995)+(980 \times 8 \times 500)+(350 \times 10 \times$ 5)] $/ 15840=531,25 \mathrm{~mm}$

Second moment of inertia with respect to the $y-y$ axis
$I_{\mathrm{yy}}=\left(450 \times 10^{3}\right) / 12+450 \times 10 \times(1000-5-531.25)^{2}+$ $980^{3} \times 8 / 12+980 \times 8 \times(531: 25-500)^{2}+\left(350 \times 10^{3}\right) / 12+$ $350 \times 10 \times(531.25-5)^{2}=2572.26 \times 10^{6} \mathrm{~mm}^{4}$
EN 10025-2:2004
S275 steel: For $t \leq 16 \mathrm{~mm} f_{y}=275 \mathrm{MPa}$

$$
\varepsilon=\sqrt{\frac{235}{f_{y}}}=\sqrt{\frac{235}{275}}=0.92
$$

Effective areas - Class 4 -EN 1993-1-5:2006§ 4.3 Example : Effective Cross-section Properties

Solution:

(i) Consider compression

Web: internal compression part- Table 5.2(1)

$$
c=[1000-20-(2 \times 6)]=968 \mathrm{~mm} \quad c / t_{\mathrm{w}}=968 / 8=121
$$

$$
42 \varepsilon=(42 \times 0.92)=38.64 c / t_{\mathrm{w}}>42 \varepsilon \therefore \text { The web is Class } 4
$$

Upper flange: outstand compression flanges -
Table 5.2(2)-

$$
\begin{aligned}
& c=[450-8-(2 \times 6)] / 2=215 \mathrm{~mm} \\
& c / t_{\mathrm{f}}=215 / 10=21.5
\end{aligned}
$$

Lower flange: outstand compression flanges

$$
c=[350-8-(2 \times 6)] / 2=165 \mathrm{~mm}
$$

$$
c / t_{\mathrm{f}}=165 / 10=16.5
$$

$14 \varepsilon=(14 \times 0.92)=12.55 c / t_{f}>14 \varepsilon$ Both flanges are Class 4
\therefore Section is Class 4

Effective areas - Class 4 -EN 1993-1-5:2006§ 4.3

 Example : Effective Cross-Section Properties(i) Consider compression

Effective area, $\boldsymbol{A}_{\text {eff }}$ (EN 1993-1-5:2006 Clauses 4.3 \& 4.4)
Assume the cross-section is subject only to stresses due to uniform axial compression
$A_{c, e f f}=\rho A_{c}, \lambda_{p}=\sqrt{\frac{f_{y}}{\sigma_{c r}}}=\frac{\vec{b} / t}{28.4 \varepsilon \sqrt{k_{\sigma}}}$
plate slenderness
Table 4.1 For internal compression elements
(WEB) with uniform compression

$$
\psi=\sigma_{2} / \sigma_{1}=1,0 \text { and } \widetilde{k}_{\sigma}=4,0
$$

$$
\therefore \bar{\lambda}_{p} \equiv \frac{121}{28.4 \times 0.92 \times \sqrt{4.0}}=2.315
$$

Reduction factor

$$
\rho=1, \theta \quad \text { for } \bar{\lambda}_{p} \leq 0.673
$$

$\rho=\frac{\overline{\bar{\lambda}}_{p}-0.055(3+\psi)}{\bar{\lambda}_{p}^{2}} \leq 1.0$ for $\bar{\lambda}_{p}>0.673$, where $(3+\psi) \geq 0$
$\rho=\frac{2.315-0.055(3+1)}{2.315^{2}}=0.391 \leq 1.0$

Effective areas - Class 4 -EN 1993-1-5:2006§ 4.3

 Example : Effective Cross-Section Properties(i) Consider compression

$$
b_{\text {eff }}=(0,391 \times 968)=378,49 \mathrm{~mm}
$$

50% allocated equally from both ends (i.e. 189,25 from the welds)

$$
A_{c, e f f, w}=(378,49+6,0+6,0) \times 8,0=3123,9 \mathrm{~mm}^{2}
$$

Table 4.2 For outstand compression elements with uniform compression

$$
\begin{aligned}
\psi & =\sigma_{2} / \sigma_{1}=\frac{1}{\bar{b}} / t \\
& \text { and } k_{\sigma}=0.43 \\
28.4 \times 0.92 \times \sqrt{0.43} & =0.058 \bar{b} / t
\end{aligned}
$$

Reduction factor $\rho=1.0$ \approx for $\bar{\lambda}_{p} \leq 0.748$
$\rho=\frac{\bar{\lambda}_{p}-0.188}{\text { 刘 }} \leq 1.0$

For the upper flange
$\therefore \bar{\lambda}_{p}=0.058 \bar{b} / \bar{t}=0.058 \times 21.5=1.247 \quad \Leftrightarrow \rho=\frac{1.247-0.188}{1.247^{2}} \Leftarrow 0.681\langle 1.0$

Effective areas - Class 4 -EN 1993-1-5:2006§ 4.3
Example : Effective Cross-Section Properties
(i) Consider compression

$$
\begin{aligned}
& \mathcal{b}_{\text {eff }}=(0.681 \times 215)=146.42 \mathrm{~mm} \\
& A_{\mathrm{c}, \mathrm{eff}, \mathrm{f}}=2 \times[(146,42+6,0+4,0) \times 10,0]=3128,4 \mathrm{~mm}^{2}
\end{aligned}
$$

For the lower flange:
$\therefore \bar{\lambda}_{p}=0.058 \bar{b} / t=0.058 \times 16.5=0.957$

$$
\Rightarrow \rho=\frac{0.957-0.188}{0.957^{2}} \cong 0.84\langle 1.0
$$

$$
b_{\text {eff }}=(0.84 \times 165)=138.6 \mathrm{~mm}
$$

$$
A_{c, e f, \text { bf }}=2 \times(138,6+6,0+4) \times 10,0=2972,0 \mathrm{~min}^{2}
$$

 $\stackrel{\circ}{\infty}{ }^{\circ}$ 앙

Effective areas - Class 4 -EN 1993-1-5:2006§ 4.3

Example : Effective Cross-Section Properties
(i) Consider compression

Effective section properties:

$A_{\text {eff }}=(3123,9+3128,4+2972)=2224,3 \mathrm{~mm}^{2}$
Location of centroid
$Z_{\text {eff }}=$ ($\left.3128,4 \times 995\right)+(195.25 \times 8 \times(1000-$ $10-195.25 / 2))+(195.25 \times 8 \times(195.25 / 2+10))$ $+(2972 \times 5)] / 9224,2=508.4 \mathrm{~mm}$

Shift of the centroid:

$$
e_{\mathrm{Ny}}=531,25-508,40=22,85 \mathrm{~mm}
$$

This shift results in atr additional bending moment which should be added to the primary bending moment when carrying out verifications in̂aaccordance with EN 1993-1-1: Clause 6.2.2.3(4), i.e. $\Delta M_{E d}=\boldsymbol{N}_{\mathrm{Ed}} \boldsymbol{e}_{\mathrm{N}}$

Effective areas - Class 4 -EN 1993-1-5:2006§ 4.3

Example : Effective Cross-Section Properties
(ii) Consider bending

Upper flange: outstand compression flanges Table 5.2(2)-
$c=[450-8-(2 \times 6)] / 2=215 \mathrm{~mm}$
$c / t_{\mathrm{f}}=215 / 10=21.5$
$14 \varepsilon=(14 \times 0.92)=12.55 \mathrm{c} / t_{\text {f }} \geq 14 \varepsilon$ compression flange is Class 4
Web: internal compression part
The classification of the web is dependent on the stress ratio ψ, see EN 1993-1-1: Table 5.2(1). Since the flanges provide the largest contribution to the bending stiffness, it is recommended that the compression flange isfifist reduced before completing the stress distribution over the depth of the section.
The cross-section considered when assessing the stress ratio from EN 1993-1-3: Table 5.2 is shown the Figure. The effective width of the top flange is equal to $312,8 \mathrm{~mm}$ as béfore.

Effective areas - Class 4 -EN 1993-1-5:2006§ 4.3

Example : Effective Cross-Section Properties
(ii) Consider bending

Cross-sectional area:
A $=(312,8 \times 10)+(980 \times 8)+(350 \times 10)$ $14468 \mathrm{~mm}^{2}$
Distance to the centroid from the bottom flangé
$z=[(312,8 \times 10 \times 995)+(980 \times 8 \times 500)+$ $(350 \times 10 \times 5)] / 14468=487,27 \mathrm{~mm}$
The cross-section to be considered when assessing the stress ratio is as shown in the Figure. The stresses o1 and $\sigma 2$ are proportional to the distance from the centroid.
The stress ratio is based on the values to the extreme fibres of the-web plate between the wetds, ie

$$
\Psi=-471,27 / 496,73=-0,949>-1,0
$$

Effective areas - Class 4 -EN 1993-1-5:2006 4.3

 Example : Effective Cross-Section Properties(ii) Consider bending

EN 1993-1-1:2005: Table 5.2: Class 3 limiting value:

$$
\frac{C}{t}=\frac{42 \varepsilon}{0.67+0.33 \psi}=\frac{42 \times 0.92}{0.67-0.33 \times 0.949}=108.3
$$

$c / t_{W}=121>108.3 \therefore$ The web is Class 4

Section is Class 4

Effective section modulus

The effective section modulus ($W_{\text {eff }}$) is determined assuming that the cross-section is subject only to bending stresses or combined bending and compression. Assuming that shear lag is negligible, the tension flange is fully effective and the web is subject to combined bending and compression.
Using the stress ratio $\psi=-0,949$ as a first approximation, the buckling coefficient k_{σ} can be obtained from EN 1993-1-5: Table 4.1.

Effective areas - Class 4 -EN 1993-1-5:2006 4.3

 Example : Effective Cross-section Properties (ii) Consider bendingBuackling factor $k_{\sigma}=7,81-6,29 \psi+9,78 \psi^{2}$ where $\psi \approx-0,949$ $k_{\sigma}=7,81+(6,29 \times 0,949)+\left(9,78 \times 0,949^{2}\right)=22,59$

$$
\therefore \bar{\lambda}_{p}=\frac{121}{28.4 \times 0.92 \times \sqrt{22.59}}=0.974>0.673
$$

$$
\rho \cong \frac{0.974-0.055(3-0.949)}{0.974^{2}}=0.908 \leq 1.0
$$

$$
\begin{aligned}
b_{\text {eff }} & =\rho b_{c}=\rho b /(1-\psi)=(0,908 \times 968,0) /(1+0,949) \\
& =451,97 \mathrm{~mm}
\end{aligned}
$$

The $b_{\text {eff }}$ value ($451,97 \mathrm{~mm}$) is allocated to the compression zone in accordance with EN 1993-1-5: Table 4.1, i.e

$$
\begin{aligned}
& b_{\text {e1 }}=0,4 b_{\text {eff }}=(0,4 \times 451,97)=180,79 \mathrm{~mm} \\
& b_{\text {e2 }}=0,6 b_{\text {eff }}=(0,6 \times 451,97)=271,18 \mathrm{~mm}
\end{aligned}
$$

$$
x=1000-(20+186,79+271,18+477,27)=44,76 \mathrm{~mm}
$$

Effective areas - Class 4 -EN 1993-1-5:2006§ 4.3

Example : Effective Cross-section Properties
(ii) Consider bending

Cross-sectional area

$$
A_{\mathrm{eff}}=[3128+3500 £(980 \times 8)-(44,76 \times 8)]=
$$ $14109,92 \mathrm{~mm}^{2}$

Location of centroid

$$
\begin{aligned}
z_{\text {eff }} & =[(3128 \times 995)+(186,79 \times 8 \times 896,61) \\
& =+(748,45 \times 8 \times 384,23)+(3500 \times 5)] / 14109,92 \\
& =479,83 \mathrm{~mm}
\end{aligned}
$$

Second moment of areá about the y - y axis:
$T_{y y}=\left(312.8 \times 10^{3}\right) / 12+312.8 \times 10 \times(1000-5-479.83)^{2}+$ $186.79^{3} \times 8 / 124186.79 \times 8 \times(186.79 / 2+10-1000-$ $479.83)^{2}+\left(748.45^{3} \times 8\right) / 12+748.45 \times 8 \mathrm{x}$

$$
=(748.45 / 2+10-479.83)^{2}+350 \times 10^{3} / 12+350 \times 10 x
$$

350 mm
z to the mid-point of the top flange $\cong(995,0-479,83)=515,17 \mathrm{~mm}$ z to the mid-point of the bottom flange $=(479,83-5,0)=474,83 \mathrm{~mm}$ $W_{\text {eff }, y, \text { top flange }}=(2217,12 \times 106) / 515,17=4,30 \times 10^{6} \mathrm{~mm}^{3}$ $W_{\text {eff }, y, \text { bottom flange }}=(2217,12 \times 106) / 474,83=4,67 \times 10^{6} \mathrm{~mm}^{3}$

Effective areas - Class 4 -EN 1993-1-5:2006§ 4.3

Example : Effective Cross-Section Properties

An improved second approximation can be made by repeating the calculations using a stress ratio ψ based on the sectionsproperties from Figure shown

Summary: Effective sectionproperties

Cross-sectional area (based on compression, see EN 1993-1-5: Clause 4.3(3)):
$A_{\text {eff }}=9224,2 \mathrm{~mm}^{2}$
Shift of the centroid (based on compression, see EN 1993-1-1: Ćlause 6.2.9.3.(2)):
$e_{\mathrm{Ny}}=22,85 \mathrm{~mm}$
Minimum elastic section modulus (based on bending, see ÉN 1993-1-5: Clause 4.3(4)):
$W_{\text {eff }, y, m i n}=4,30 \times 10^{6} \mathrm{~mm}^{3}$

Effective properties of cross-sections with Class 3

webs and Class 1 or 2 flanges/EN 1993-1-1: 2005 § 6.2.2.4 Generally, a Class 3 cross-section (where the most slender element is Class 3) would assume an elastic distribution of stresses, and its bending resistance would be calculated using the elastic modulus W_{e}.

However, EN 1993-1-1: 2005 § 6.2.2.4 makes special allowances for cross-sections with Class 3 webs and Class 1 or 2 flanges by permitting the cross-sections to be classified as effective Class 2 cross-sections.

Effective properties of cross-sections with Class 3

webs and Class 1 or 2 flanges/EN 1993-1-1: 2005 \& 6.2.2.4
Example : cross-section resistance in bending
A welded I section is to be designed in bending. The proportions of the section have been selected such that it may be classified as an effective Class 2 cross-section. The chosen section is of grade S275 steel, and has two $200 \times 16 \mathrm{~mm}$ flanges, an overall section height of 600 mm and a 6 mm web. The weld size (leg length) s is 6.0 mm . Assuming full lateral restraint, calculate the bending moment resistance.

$b=200.0 \mathrm{~mm}$ $t_{\mathrm{f}}=16.0 \mathrm{~mm}$
$h=600.0 \mathrm{~mm}$
$t_{\mathrm{w}}=6.0 \mathrm{~mm}$
$s=6.0 \mathrm{~mm}$
$W_{\mathrm{el}, y}=2124838 \mathrm{~mm}^{3}$

Effective properties of cross-sections with Class 3

webs and Class 1 or 2 flanges EN 1993-1-1: 2005 § 6.2.2.4 Section properties
Since $t_{\text {max }}=16 \mathrm{~mm}$ Then $\mathrm{f}_{\mathrm{y}}=275 \mathrm{~N} / \mathrm{mm}^{2}$ $\mathrm{E}=210000 \mathrm{~N} / \mathrm{mm}^{2}$
Cross-section classification

$$
\varepsilon=\sqrt{\frac{235}{f_{y}}}=\sqrt{\frac{235}{275}}=0.92
$$

Outstand flanges (Table 5.2 , sheet 2):

$\mathrm{C}_{\mathrm{f}}=\left(\mathrm{b}-\mathrm{t}_{\mathrm{w}}-2 \mathrm{~s}\right) / 2=91.0 \mathrm{~mm}$
$C_{f} / \mathrm{t}_{\mathrm{f}}=91 / 16=5.69$
Limit for Class 1 flange $=9 \varepsilon=8.32$ $8.32>6.86$; flange is Class 1
$b=200.0 \mathrm{~mm}$
$t_{\mathrm{f}}=16.0 \mathrm{~mm}$
$h=600.0 \mathrm{~mm}$
$t_{\mathrm{w}}=6.0 \mathrm{~mm}$
$s=6.0 \mathrm{~mm}$
$W_{\mathrm{el}, y}=2124838 \mathrm{~mm}^{3}$

Effective properties of cross-sections with Class 3

webs and Class 1 or 2 flanges/EN 1993-1-1: 2005 § 6.2.2.4
Cross-section classification
Web - internal part in bending (Table 5.2 , sheet 1):
$\mathrm{c}_{\mathrm{w}}=\mathrm{h}-2 \mathrm{t}_{\mathrm{f}}-2 \mathrm{~s}=556.0 \mathrm{~mm}$
$c_{w} / t_{w}=556 / 6=92.7$
Limit for Class 2 web $\cong 83 \varepsilon=76.4$
Limit for Class $3 \mathrm{web}=124 \varepsilon=114.6$ 114.6> 92.7>76.4; web is Class 3

Overall cross-section classification is therefore Class 3 ,

$$
\begin{aligned}
& b=200.0 \mathrm{~mm} \\
& t_{\mathrm{f}}=16.0 \mathrm{~mm} \\
& h=600.0 \mathrm{~mm} \\
& t_{\mathrm{w}}=6.0 \mathrm{~mm} \\
& s=6.0 \mathrm{~mm} \\
& W_{\text {el, } y}=2.124838 \mathrm{~mm}^{3}
\end{aligned}
$$

Effective properties of cross-sections with Class 3

webs and Class 1 or 2 flanges/EN 1993-1-1: 2005 \& 6.2.2.4 Plastic neutral axis of effective section
but $t_{f}+2 x^{20 x t_{w}}$ next $_{w}+s x t_{w}$
$=\mathrm{bxt}_{\mathrm{f}}+\left(\mathrm{h}-\mathrm{t}_{\mathrm{f}}-\mathrm{z}_{\mathrm{p}}\right) \mathrm{xt}_{\mathrm{w}}$
$110.4 \times 2 \times 6+6 \times 6=(600-$ $\left.16-z_{p}\right) \times 6$
$\mathrm{z}_{\mathrm{p}}=357.2 \mathrm{~mm}$
Plastic modulus of effective section
$W_{\text {pl, , , eff }}=b t_{f}\left(z_{\mathrm{p}}=0.5 t_{\mathrm{f}}\right)+b \mathrm{t}_{\mathrm{f}}\left(\mathrm{h}-\mathrm{z}_{\mathrm{p}}-0.5 \mathrm{t}_{\mathrm{f}}\right)+\mathrm{t}_{\mathrm{w}} \mathrm{s}\left(\mathrm{z}_{\mathrm{p}}-\mathrm{t}_{\mathrm{f}}-0.5 \mathrm{~s}\right)+$

$$
t_{w}\left(h-z_{p}-t_{f}\right)\left(h-z_{p}-t_{f}\right) / 2+\left(20 \varepsilon t_{w}\right) t_{w}\left(20 \varepsilon t_{w}\right) / 2+\left(20 \varepsilon t_{w}\right) t_{w}
$$

$$
\left[z_{\mathrm{p}}-s-t_{\mathrm{f}}-\left(20 \varepsilon t_{\mathrm{w}} / 2\right]\right.
$$

$W_{\text {gl, }, \text { eff }}=b t_{f}\left(h-t_{f}\right)+0.5 t_{w}\left(b-z_{p}-t_{f}\right)^{2}+\left(20 \varepsilon t_{w}\right) t_{w}\left[z_{p}-s-t_{f}\right]+$ $t_{\mathrm{w}} \mathrm{s}\left(\mathrm{z}_{\mathrm{p}}-\mathrm{t}_{\mathrm{f}}-0.5 \mathrm{~s}\right)=2257326 \mathrm{~mm}^{3}$

Effective properties of cross-sections with Class 3

webs and Class 1 or 2 flanges/EN 1993-1-1: 2005 \& 6.2.2.4 Plastic Bending resistance of cross-section
$M_{c, y, R d}=M_{p l, y, R d}$
$=W_{\text {pl, , , eff }} f_{y} / \gamma_{\text {mo }}$
for effective class 2 sections
$\begin{aligned} M_{c, v \mathrm{Nd}} & =2257326 \times 275 / \mathbb{1}^{-} \\ & =620.76 \mathrm{kN} . \mathrm{m}^{2}\end{aligned}$

Elastic section modulus
$W_{e l, y}=\left[b h^{3} / 12-\left(b-t_{w}\right)\left(h-2 t_{f}\right)^{3} / 12\right] /(0.5 \mathrm{~h})=2124838 \mathrm{~mm}^{3}$
Elastic Bending resistance of cross-section
$M_{c, i, R d}=M_{e l, y, R d}=W_{e l, y} f_{y} / \gamma_{M O}=2124838 \times 275 / 1=584.3 \mathrm{kN.m}$ Therefore, for the chosen section, use of the effective Class 2 plastic properties results in an increase in bending moment resistance of approximately 6%.

