مسائل حصويات

مثال 1:

عينة من الحصويات تشربها %1.2 ، كتلتها الرطبة تعادل 847.3g ، بعد تجفيفها بالفرن أصبحت كتلتها الجافة تعادل 792.7g . احسب الرطوبة الكلية والرطوبة الحرة (رطوبة السطح) لهذه العينة.

الحل:

• الرطوبة الكلية:

$$w\% = \frac{847.3 - 792.7}{792.7} * 100 = 6.9\%$$

• الرطوبة الحرة:

$$5.7\% = 1.2 - 1.2 = 1$$
 التشرب – الرطوبة الكلية = $1.2 = 5.7$

مثال 2:

نريد مزج نوعين من الحصويات A, B للحصول على خليط يحقق المواصفات المطلوبة. حيث مواصفات النوع A هي: وزنه النوعي يعادل 2.441 و تشربه هي: وزنه النوعي يعادل 2.441 و تشربه 8 = 2.441 و مواصفات النوع B هي: وزنه النوعي يعادل 2.441 و تشربه 8 = 2.441 أوجد الوزن النوعي للمزيج و نسبة تشربه.

الحل:

بما أن نسبة المزج للنوع A هي %50 فان نسبة المزج للنوع B هي %50 لأن مجموع نسب المزج يعادل %100

• الوزن النوعي:

$$G = \frac{1}{\frac{0.5}{2.814} + \frac{0.5}{2.441}} = 2.614$$

التشرب:

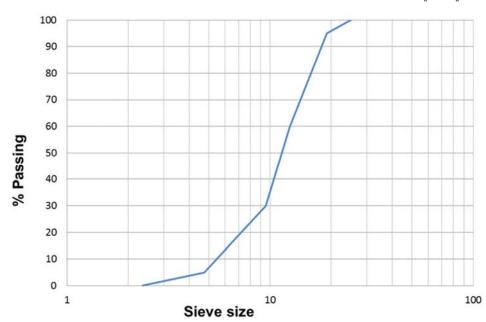
التشرب
$$\% = 0.5 * 0.4 + 0.5 * 5.2 = 2.8\%$$

مثال 3:

أُجريت تجربة التحليل الحبي على عينة جافة من الحصويات وزنها 8145g، فكانت الأوزان المحجوزة على كل منخل كما هو مبين في الجدول التالي:

القعر	2.36	4.75	9.5	12.5	19	25	قطر (فتحة) المنخل mm
0.0	375	2030	2435	2850	405	0.0	الوزن المحجوز على كل منخل g
							المطلوب:

1. حساب النسبة المئوية المارة بالنسبة لكل منخل.


- 2. حساب القطر الأعظمي، القطر الأسمي الأعظمي
 - 3. رسم منحني التحليل الحبي.

الحل:

1. حساب النسبة المئوية المارة:

D (mm)	الوزن المحجوز على	النسبة المئوية المحجوزة	النسبة المئوية	نسبة المئوية
	کل منخل g	على كل منخل %	التراكمية المحجوزة %	المارة %
25	0.0	0	0	100
19	405	5	5	95
12.5	2850	35	40	60
9.5	2435	30	70	30
4.75	2030	25	95	5
2.36	375	5	100	0
القعر	0.0	0	100	0
	المجموع 8130		_	

- 2. القطر الاعظمي يعادل 25mm و القطر الاسمي االاعظمي يعادل 19mm.
 - 3. المنحني الحبي:

مثال 4:

يبين الجدول التالي نتائج التحليل الحبي لعينة من الحصويات:

0.15	0.3	0.6	1.18	2.36	4.75	9.5	قطر (فتحة) المنخل mm
97	79	55	35	15	2	0	النسبة التراكمية المحجوزة %

المطلوب حساب معامل النعومة

الحل:

$$FM = \frac{0+2+15+35+55+79+97}{100} = 2.83$$

مثال 5 :

يبين الجدول التالي نتائج التحليل الحبي لعينة من الحصويات:

2.36	4.75	9.5	12.5	19	25	قطر (فتحة) المنخل mm
100	95	70	40	5	0	النسبة التراكمية المحجوزة %
						المطلوب حساب معامل النعومة

الحل:

$$FM = \frac{5 + 70 + 95 + 100 + 100 + 100 + 100 + 100}{100} = 6.7$$

مثال 6:

يبين الجدول التالي نتائج التحليل الخبي لنو عين من الحصويات A, B بالإضافة للمجال المسموح بالمواصفة المعتمدة:

0.15	0.3	0.6	1.18	2.36	4.75	قطر (فتحة) المنخل mm
0	8-30	30-65	55-85	78-100	100	المجال المسموح للنسبة المئوية
						المارة % وفقاً للمواصفة المعتمدة
0	38	79.9	92.6	97.1	100	النسبة المئوية المارة % للنوع A
0	14	25	50	75	100	النسبة المئوية المارة % للنوع B

المطلوب:

حساب نسبة المزج لكلا النوعين اللازمة للحصول على نوع ثالث يحقق المواصفة علما ً بان القيمة الهدف للمزيج (النسبة المئوية المارة من المنخل ذو الفتحة 0.6mm) تعادل 50% .

الحل:

من خلال مقارنة النسب المارة لكلا النوعين مع النسب المسموحة بالمواصفة نجد أن هنالك نقاطاً تقع خارج المجال المسموح وبالتالي كلا النوعين لا يحققان المواصفة، لذلك نقوم بعملية المزج و يتم تحديد نسبة المزج من المعادلتين التاليتين:

$$79.9X_a + 25X_b = 50$$
$$X_a + X_b = 1$$

بحل المعادلتين نجد:

$$X_a = 0.455$$
 , $X_b = 0.545$

باستخدام نسب المزج يمكن إيجاد النسبة المئوية المارة للمزيج ومقارنتها مع المجال المسموح.

0.15	0.3	0.6	1.18	2.36	4.75	قطر (فتحة) المنخل mm
0	8-30	30-65	55-85	78-100	100	المجال المسموح للنسبة المئوية
						المارة % وفقاً للمواصفة المعتمدة
0	24.9	50.0	69.4	85.1	100	النسبة المئوية المارة % للمزيج

يتضح من خلال الجدول أن المزيج يحقق المواصفة المعتمدة.
