SIMRLE CONNECTIONS Examples

Example: 1

Consider the member AB of the steel truss, indicated in Figure, assuming it is subjected to a design tensile axial force of $N_{\text {Ed }}=220 \mathrm{kN}$. The cross section consists of two angles of equal legs, in steel grade S235. Design member AB assuming two distinct possibilities for the connections:
a) Welded connections, b) bolted connections

Steel truss

SIMRLE CONNECTIONS Examples

Example: 1
a) Welded connéctions

The member is made up by two angles of equal legs, but the connection is made only in one leg of the angle. Thus, according to clause 4.13 of the EC3-1-8, the effective arrea can be considered equal to the gross area. Therefore, the following conditions must be satisfied:
$\widehat{N_{E d}} \leq N_{t, R d}=\frac{A f_{\text {z }}}{\mathcal{K}_{M 0}}$

Considering the design axial force $=220 \mathrm{kN}$, then:

SIMPLE CONNECTIONS Examples

Example: 1
a) Welded connéctions

$$
220 \leq \frac{A \times 235 \times 10^{3}}{1.0} \Rightarrow A \geq 9.36 \times 10^{-4} \mathrm{~m}^{2}=9.36 \mathrm{~cm}^{2}
$$

From/a table of commercial profiles, a solution with two angles $50 \times 50 \times 5 \mathrm{~mm}$, with a tótal area of $2 \times 4.8=9.6 \mathrm{~cm}^{2}$, satisfies the above safety requirement.
b) Bolted connections

In this case, the member is made up by two angles of equal legs is connected by two bolts only in one leg. According to clause 3.10.3 of the EC3-1-8, the following design conditions must be ensured:

SIMRLE CONNECTIONS Examples

Example: 1
b) Bolted connections

$$
N_{E d} \leq N_{t, R d}=\min \left[N_{p l, R d}=\frac{A f_{y}}{\gamma_{M 0}} ; N_{u, R d}=\frac{\beta_{2} A_{n e t} f_{u}}{\gamma_{M 2}}\right]
$$

β_{2} is a factor obtained from Jable 3.8 of EC-1-8.

A first check based on the plastic design of the gross section leads to:

$$
220 \leq \frac{A \times 235 \times 10^{3}}{10} \Rightarrow A \geq 9.36 \times 10^{-4} \mathrm{~m}^{2}=9.36 \mathrm{~cm}^{2}
$$

Hence, the section obtained in the previous design, two angles $50 \times 50 \times 5 \mathrm{~mm}$, with a total area of $2 \times 4.8=9.6 \mathrm{~cm}^{2}$, also satisfies this safety requirement.

SIMRLE CONNECTIONS Examples

Example: 1
b) Bolted connections

The second condition (3.12, EC3-1-8), requires the evaluation of the net area $A_{\text {net }}$, and the factor β_{2}, both evaluated according to clause 3.10.3 of EC3-1-8.
For $d_{0}=18 \mathrm{~mm}, 2.5 d_{0}=45 \mathrm{~mm}$ and $5 d_{0}=90 \mathrm{~mm}$.
As $p_{1}=100 \mathrm{~mm}>90 \mathrm{~mm}$, then $\beta_{2}=0.7$.
The net area of the bolted section made up of two angles is given by:
$A_{\text {net }}=A-2 t d_{0}=9.6-2 \times 0.5 \times 1.8$
$=7.8 \mathrm{~cm}^{2}$.
Thus, the design ultimate resistance is given by:

$$
N_{u, R d}=\frac{0.7 \times 7.8 \times 10^{-4} \times 360 \times 10^{3}}{1.25}=157.2 \mathrm{kN}
$$

SIMRLE CONNECTIONS Examples

Example: 1
b) Bolted connections

However, $N_{E d}=220 \mathrm{kN}>N_{U, R d}=157.2 \mathrm{kN}$; therefore, the chosen cross section is not appropriate. By adopting a cross section with enhanced resistance, for example, two angles $60 \times 60 \times 6 \mathrm{~mm}\left(A=13.82 \mathrm{~cm}^{2}\right.$ and $\left.A_{\text {net }}=11.6 \mathrm{~cm}^{2}\right)$, then: $N_{p l, R d}^{R}=13.82 \times 10^{-4} \times 235 \times 10^{3} / 1.0=324.8 \mathrm{kN}>N_{E d}=220 \mathrm{kN}$

$$
N_{u, R d}=\frac{0.7 \times 11.6 \times 10^{-4} \times 360 \times 10^{3}}{1,25}=235.1 \mathrm{kN}>N_{E d}=220 \mathrm{kN}
$$

As $N_{p l, R d}=324.8 \mathrm{kN}>N_{u, R d}=235.1 \mathrm{kN}$, failure is nonductile; however, since this is not a design condition, the section defined by two angles $60 \times 60 \times 6 \mathrm{~mm}$ can be adopted.

SIMPLE CONNECTIONS Examples

Example: 1 ACCORDING TO BS5950:2000 (Clause 4.6.3.2)
$A_{e}=K_{e} A_{\text {net }} \leq A \quad, \quad a_{2}=A-a_{1}$
Reduce Effective Area=A ${ }_{e, \text { Refucted }}=\left(A_{\mathrm{e}}-0.25 \oint_{2}\right)$ for bolted and connections

$$
=\left(A_{g}-0.15 a_{2}\right) \text { for welfled connections }
$$

a) Welded connections
$220 \leq \frac{A \times 235 \times 10^{3}}{1.0}$
$\Rightarrow A \geq 9.36 \times 10^{-4} \mathrm{~m}^{2}$
$=9.36 \mathrm{~cm}^{2}$

a) Welded connections

SIMPLE CONNECTIONS Examples

 Example: 1 ACCORDING TO BS5950:2000 (Clause 4.6.3.2)a) Welded connections

From a table of commercial profiles, a solution with two
angles $50 \times 50 \times 5 \mathrm{~mm}$, with a total area of $2 \times 4.8=9.6 \mathrm{~cm}^{2}$, satisfies the above safety-requirement.
$\mathrm{N}_{\mathrm{t}}=\mathrm{f}_{\mathrm{y}}\left(A_{\mathrm{g}}-0.15 a_{2}\right)$
$a_{1}=50 \times 5 \times 2=500 \mathrm{~mm}^{2}, \quad a_{2}=A_{g}-a_{1}=960-500=460 \mathrm{man}^{2}$
$\mathrm{N}_{\mathrm{t}}=235 \mathrm{x}(960-0.15 \times 460) / 1000=209.4 \mathrm{kN}$
$N_{E d}=220 \mathrm{kN}>N_{t, R d}=209.4 \mathrm{kN} ;$ therefore, the chosen cross section is notappropriate By adopting across section with enhanced résistance, for example, two angles $60 \times 60 \times 6 \mathrm{~mm}\left(A=13.82 \mathrm{~cm}^{2}\right)$
$a_{1}=60 \times 6 \times 2=720 \mathrm{~mm}^{2} \mathrm{c}_{2}=\mathrm{A}_{\mathrm{g}} \mathrm{a}_{1}=1382-720=662 \mathrm{~mm} 2$ $\mathrm{N}_{\mathrm{t}}=235 \mathrm{x}(1382-0.15 \times 662) / 1000=301.4 \mathrm{kN}>N_{E d}=220 \mathrm{kN}$

SIMRLE CONNECTIONS Examples

Example: 1
b) Bolted connections $K_{e}=1.2$
$\mathcal{N}_{\mathrm{t}, \mathrm{Rd}}=\mathrm{f}_{\mathrm{y}}\left(A_{\mathrm{e}}-0.25 \mathrm{a}_{2}\right), \mathrm{A}_{\mathrm{e}}=\left(\mathrm{a}_{\mathrm{e} 1}+\mathrm{a}_{\mathrm{e} 2}\right) \leq 1.2\left(\mathrm{a}_{\mathrm{n} 1}+\mathrm{a}_{\mathrm{n} 2}\right)$
$\mathrm{a}_{\mathrm{e} 1}=$ effective area of the connected leg $\leqslant \mathrm{K}_{\mathrm{e}} \mathrm{a}_{\mathrm{n} 1} \leq \mathrm{a}_{1}$
$\mathrm{a}_{\mathrm{e} 2}=$ effective area of the Unconnected leg=K $\mathrm{K}_{\mathrm{n} 2} \approx \mathrm{a}_{2}$
$\mathrm{a}_{\mathrm{n}, 1}=\left(\mathrm{a}_{1}\right.$-area of bolt tholes)
$a_{n 2}=\left(a_{2}\right.$-area of bolt holes if any)
$a_{1}=50 \times 5 \times 2=500 \mathrm{~mm} \tilde{m}^{2}, ~ a 2=960-500=460 \mathrm{~m}_{\mathrm{m}^{2}}$
$a_{\mathrm{n} 1}=(500-2 \times 5 \times 18)=320 \mathrm{~mm}^{2}$
$a_{n 2}=(460-0)=460 \mathrm{~mm}^{2}$
$\mathrm{a}_{\mathrm{e} 1}=1.2 \mathrm{x}(320)=384 \mathrm{~mm}^{2}$
$a_{\mathrm{e} 2} \approx 1.0 \times(460)=460 \mathrm{~mm}^{2}, \mathrm{~K}_{\mathrm{e}}=1$ No holes, not connected leg
$A_{e}=\left(\mathrm{a}_{\mathrm{e} 1}+\mathrm{a}_{\mathrm{e} 2}\right)=(384+460)=844 \mathrm{~mm}^{2} \leq 1.2(320+460)=936 \mathrm{OK}$ $N_{t, R d}=235 \times(844-0.25 \times 460)=171.3 \mathrm{kN}<220 \mathrm{kN}$ NOT OK
Use two angles $60 \times 60 \times 6 \mathrm{~mm}\left(A=13.82 \mathrm{~cm}^{2}\right)$

SIMRLE CONNECTIONS Examples

Example: 1
b) Bolted connections $K_{e}=1.2$
$a_{1}=60 \times 6 \times 2=720 \mathrm{~mm}^{2}, a 2=1382-720=662 \mathrm{~mm}^{2}$
$a_{n 1}=(720-2 \times 5 \times 18)=540 \mathrm{~mm}^{2}$
$\mathrm{a}_{\mathrm{n} 2}=(662-0)=662 \mathrm{~mm}^{2}$
$\mathrm{a}_{\mathrm{e} 1}=1.2 \times(540)=648 \mathrm{~mm}^{2}$.
$a_{\mathrm{e} 2}=1.0 x(662)=662 \mathrm{~mm}^{2}, \mathrm{~K}_{\mathrm{e}}=1$ No holes, not connected leg $A_{e}=\left(a_{e 1}+a_{e 2}\right)=(648+662)=1310 \mathrm{~mm}^{2} \leq 1.2(540+662)=1442$
$\mathrm{N}_{\mathrm{t}, \mathrm{Rd}}=235 \mathrm{x}(1310-0.25 \times 662)=268.96 \mathrm{kN}>220 \mathrm{kN}$ OK

SIMRLE CONNECTIONS Examples

Example: 2
Check the design of shear connection shown in Figure.
-The connection ís
Category A:
Bearing type
-Bolts 6M20(4.8);
$\mathrm{d}=20 \mathrm{~mm} ; \mathrm{d}_{0}=$
$20+2=22 \mathrm{~mm}$,

- Used two cover
plates 200×8
(S275).
- EV,Ed $=650 \mathrm{kN} \quad \mathrm{Eves}^{\mathrm{N}}$
$\mathrm{F}_{\mathrm{VED}}$

SIMPLE CONNECTIONS Examples

 Example: 2

Minimum and maximum spacing, end and edge distances checking (Table 3-3 EN 1993-1-8: 2005 (E)):
$e_{1 \text { min }}=1.2 \mathrm{~d}_{0}=1,2 \times 22=26.4 \mathrm{~mm}<40 \mathrm{~mm} / \mathrm{OK} /$
$\mathrm{e}_{1 \text { max }}=4 \mathrm{t}+40 \mathrm{~mm}=4 \times 8+40=72 \mathrm{~mm}>40 \mathrm{~mm} / \mathrm{OK} /$
$\mathrm{e}_{2 \text { min }}=1.2 \mathrm{~d}_{0} \xlongequal{\approx} .2 \times 22=26.4 \mathrm{~mm}<45 \mathrm{~mm} / \mathrm{OK} /$
$\mathrm{e}_{2 \text { max }}=4 \mathrm{t}+40 \mathrm{~mm}=4 \times 8-40=72 \mathrm{~mm} \gtrsim 45 \mathrm{~mm} / 0 \mathrm{~K} /$
$p_{1 \text { min }}=2.2 \mathrm{~d}_{0}=2.2 \times 22=48.4 \mathrm{~mm}<60 \mathrm{~mm} / \mathrm{OK} /$
$\sum_{1 \text { max }}=\min .(14 \mathrm{t}=14 \times 8=112 ; 200)=112>60 \mathrm{~mm} / \mathrm{OK} /$ $\mathrm{p}_{2 \text { min }}=2.4 \mathrm{~d}_{\hat{\theta}}=2.4 \times 22=52.8 \mathrm{~mm}<110 \mathrm{~mm} / \mathrm{OK} /$ $\mathrm{P}_{2 \text { max }}=$ min. $(14 \mathrm{t}=14 \times 8=112 ; 200)=112>110 \mathrm{~mm} / \mathrm{OK} /$

SIMPLE CONNECTIONS Examples

Example: 2

Steet S355N (for $\mathrm{t} \leq 40 \mathrm{~mm}) \rightarrow f_{\mathrm{y}}=355 \mathrm{MPa}, f_{\mathrm{u}}=510 \mathrm{MPa}$ (Table 3-1 EN 1993-1-1 : 2005 (E))
Steel S275 (for t $\leq 40 \mathrm{~mm}) \rightarrow f_{\mathrm{y}}=275 \mathrm{MPa}, f_{\mathrm{u}}=430 \mathrm{MPa}$ (Table 3-1 EN 1993-1-1 : 2005 (E))
Nominal values of the yield strength σ_{56} and the ultimate tensile strength $f_{\text {ub }}$ for bolts (Table 3-1 EN 1993-1-8: 2005 (E)):

Bolts grade $4.8 \rightarrow f_{\mathrm{yb}}=320 \mathrm{MPa}$, $f_{\mathrm{ub}}=400 \mathrm{MPa}$.

SIMPLE CONNECTIONS Examples

Example: 2

$F_{V, E d}$

The thread of a fit bolt should not be included in the shear plane
$A=\pi d^{2} / 4=\pi \times 20^{2} / 4=314 \mathrm{~mm}^{2}$
Design fésistance for individual fastener subjected to shear per shear plane (Tảble 3-4 EN 1993-1-8: 2005 (E))

$$
F_{V, R d}=\frac{\alpha_{V} f_{u b} A}{\gamma_{M 2}}=\frac{0.6 \times 400 \times 314}{1.25}=60288 \mathrm{~N}=60.288 \mathrm{kN}
$$

SIMPLE CONNECTIONS Examples

Example: 2

$F_{V, E d}$

Because bolt is in double shear $\rightarrow F_{V, R d}=2 \times 60.288=$ 120.576 kN

Bearing resistance (Table-3-4 EN 1993-1-8: 2005-(E))

$$
F_{\mathrm{b}, \mathrm{Rd}}=\frac{k_{1} a_{b} f_{u} d t}{\gamma_{M 2}}
$$

Attention: Steel grade and thickness of tension member and cover plates not the same

SIMPLE CONNECTIONS Examples

 Example: 2$$
F_{\mathrm{b}, \mathrm{Rd}}=\frac{k_{1} a_{b} f_{u} d t}{\gamma_{M 2}} \mathrm{E}_{\mathrm{vud}}
$$

1- End bolts bearing on plate of connected part $t=12 \mathrm{~mm}, f_{\mathrm{u}}=510 \mathrm{MPa}, d=20 \mathrm{~mm}, \gamma_{M 2}=1.25$
$a_{d}=\frac{e_{1}}{3 d_{0}}=\frac{40}{3 \times 22}=0.61$
$a_{b}=\min .\left(\alpha_{d} ; \frac{f_{u b}}{f_{u}} ; 1.0\right)=\min \left(0.61 ; \frac{400}{510}=0.78 ; 1.0\right)=0.61$

$$
k_{1}=\min \left(2.8 \frac{e_{2}}{d_{0}}-1.7 ; 1.4 \frac{p_{2}}{d_{0}}-1.7,2.5\right)
$$

$$
=\min .\left(2.8 \times \frac{45}{22}-1.7=4.0 ; 1.4 \times \frac{110}{22}-1.7=5.3 ; 2.5\right)=2.5
$$

SIMPLE CONNECTIONS Examples

Example: 2

$$
F_{\mathrm{b}, \mathrm{Rd}}=\frac{k_{1} a_{b} f_{u} d t}{\gamma_{M 2}}
$$

1- End bolts bearing on plate of connected part

$$
F_{b}, d_{d}=\frac{k_{1} \alpha_{b} f_{u} d t}{\gamma_{M 2}}=\frac{2.5 \times 0.61 \times 510 \times 20 \times 12}{1.25}=149328 \mathrm{~N}=149.3 \mathrm{kN}
$$

2- Inner bolts bearing on plate of connécted part $t=12 \mathrm{~mm}, f_{\mathrm{u}}=510 \mathrm{MPa}, d=20 \mathrm{~mm}, \gamma_{M 2}=7.25$

$$
\alpha_{d}=\frac{p_{1}}{3 d_{0}}-\frac{1}{4}=\frac{60}{3 \times 22}-\frac{1}{4}=0.66, k_{1}=2.5
$$

$$
\alpha_{b}=\min .\left(\alpha_{d} ; \frac{f_{u b}}{f_{u}} ; 1.0\right)=\min \left(0.66 ; \frac{400}{510}=0.78 ; 1.0\right)=0.66
$$

SIMPLE CONNECTIONS Examples

 Example: 2$$
F_{\mathrm{b}, \mathrm{Rd}}=\frac{k_{1} a_{b} f_{u} d t}{\gamma_{M 2}}
$$

2- Inner bolts bearing on plate of connected part

$$
F_{b, R d}=\frac{k_{1} \alpha_{b} f_{u} d t}{y_{M 2}}=\frac{2.5 \times 0.66 \times 510 \times 20 \times 12}{1.25}=161568 \mathrm{~N}=161.6 \mathrm{kN}
$$

3- End bolts beăring on cover plate

$$
t=2 \times 8=16 \mathrm{~mm}, f_{\mathrm{u}}=430 \mathrm{MPa}, d=20 \mathrm{~mm}, \gamma_{\mathrm{Mz}}=1.25
$$

$$
\alpha_{d}=\frac{e_{1}}{3 d_{0}}=\frac{40}{3 \times 22}=0.61
$$

SIMPLE CONNECTIONS Examples

Example: 2

$$
F_{\mathrm{b}, \mathrm{Rd}}=\frac{k_{1} a_{b} f_{u} d t}{\gamma_{M 2}}
$$

3- End bolts bearing on cover plate

$$
\alpha_{b}=\min .\left(\alpha_{d} ; \frac{f_{u b}}{f_{u}} ; 1.0\right)=\min .\left(0.61 ; \frac{400}{430}=0.93 ; 1.0\right)=0.61
$$

$$
k_{1}=\min .\left(2.8 \frac{e_{2}}{d_{0}}-1.7 ; 1.4 \frac{p_{2}}{d_{0}} 1.7 ; 2.5\right)
$$

$$
=\min .\left(2.8 \times \frac{45}{22}-1.7=4.0 ; 1.4 \times \frac{110}{22}-1.7=5.3 ; 2.5\right)=2.5
$$

$$
F_{b, R d}=\frac{k_{1} \alpha_{b} f_{u} d t}{\gamma_{M 2}}=\frac{2.5 \times 0.61 \times 430 \times 20 \times 16}{1.25}=167870 \mathrm{~N}
$$

SIMPLE CONNECTIONS Examples

 Example: 2$$
F_{\mathrm{b}, \mathrm{Rd}}=\frac{k_{1} a_{b} f_{u} d t}{\gamma_{M 2}}
$$

4- Inner bolts bearing on covef plate

$$
t=2 \times 8=16 \mathrm{~mm}, f_{\mathrm{u}}=430 \mathrm{MPa} \tilde{d}=20 \mathrm{~mm}, \gamma_{\mathrm{M}}=1.25
$$

$$
\alpha_{d}=\frac{p_{1}}{3 d_{0}}-\frac{1}{4}=\frac{60}{3 \times 22}-\frac{1}{4}=0.66, \quad k_{1}=2.5
$$

$$
\alpha_{b}=\min .\left(\alpha_{d} ; \frac{f_{u b}}{f_{u}} ; 1.0\right)=\min \left(0.66 ; \frac{400}{430}=0.93 ; 1.0\right)=0.66
$$

$$
\begin{aligned}
F_{b, R d}=\frac{k_{1} \alpha_{b} f_{u} d t}{\gamma_{M 2}}=\frac{2.5 \times 0.66 \times 430 \times 20 \times 16}{1.25}= & 181630 \mathrm{~N} \\
& =181.63 \mathrm{kN}
\end{aligned}
$$

SIMPLE CONNECTIONS Examples

 Example: 2$F_{V, R d}=n_{b} F_{R d, \text { mina }}$
$F_{R d, \text { min } i}=\min .\left(F_{V, R d,} F_{b, R d,}\right)$. $=$

$$
=\min .(120.576 ; 149.3 ; 1616 ; 167.87 ; 181.63)=120.576 \mathrm{kN}
$$

Checking the connection if it is long Joint:
IF $L_{j} \curvearrowright 15 d$, Then
The design shear resistance $F_{\text {y, Rd }}$ of all the fasteners calcưlated according to Table 3.4 should be reduced by multiplying it by a reduction factor 今ill $_{\text {Lf }}$

$$
1.0 \leqslant \boldsymbol{\beta}_{\mathrm{Lf}}=1-\frac{\mathrm{L}_{\mathrm{j}}-15 \mathrm{~d}}{200 \mathrm{~d}} \geq 0,75
$$

SIMPLE CONNECTIONS Examples

 Example: 2
$L_{j}=2 \times 60=120<15 \mathrm{~d}=15 \times 20=300 \mathrm{~mm} \quad \therefore$ short Joint, No
Reduction to the bolts shear resistance
$\widetilde{F}_{V, E d}=650 \mathrm{kN}<F_{\widehat{V}, R d}=6 \times 120.576=723.456 \mathrm{kN} \quad / \mathrm{OK} /$
Check design tension resistance for cross section of connected part reduced by holes

$$
N_{p l, R d}=\frac{A f_{y}}{\gamma_{M 0}}=\frac{200 \times 12 \times 355}{1.0}=852000 \mathrm{~N}=852 \mathrm{kN}
$$

$$
A_{\text {net }}=A-n_{V} d_{0} t=200 \times 12-2 \times 22 \times 12=1872 \mathrm{~mm}^{2}
$$

SIMPLE CONNECTIONS Examples

 Example: 2

Check design tension resistance for cross section of connected part reduced by holes

$$
\begin{aligned}
& N_{u, R d}=\frac{0.9 A_{n s t} f_{u}}{\gamma_{M 2}}=\frac{0.9 \times 1872 \times 510}{1.25}=687298 \mathrm{~N}=687.3 \mathrm{kN}<N_{p l, R d} \\
& F_{V, E d}=650 \mathrm{kN}<N_{u, R d}=687.30 \mathrm{kN} \quad / \mathbf{O K} /
\end{aligned}
$$

Check design tension resistance for cross section of cover plates reduced by holes

$$
N_{p l, R d}=\frac{A f_{y}}{\gamma_{M 0}}=\frac{200 \times 2 \times 8 \times 275}{1.0}=880000 \mathrm{~N}=880 \mathrm{kN}
$$

SIMPLE CONNECTIONS Examples

 Example: 2

Check design tension resistance for cross section of cover plates reduced by holes

$$
A_{n e t}=A-n_{V} d_{0} t=200 \times 2 \times 8-2 \times 22 \times 2 \times 8=2496 \mathrm{~mm}^{2}
$$

$$
N_{u, R d}=\frac{0.9 A_{n \theta t} f_{u}}{\gamma_{M 2}}=\frac{0.9 \times 2496 \times 430}{1.25}=772700 \mathrm{~N}=772.7 \mathrm{kN}<N_{p l}, \mathrm{Rd}
$$

$$
\mathcal{F}_{V, E d}=650 \mathrm{kN}<N_{u, R d}=772.7 \mathrm{kN} \sim / \mathrm{OK} /
$$

SIMRLE CONNECTIONS Examples

Example: 3
Check the design of shear connection shown in Figure.

-The connection is Category A: Bearing type

- Steel S355 (for $\mathrm{t} \leq 40 \mathrm{~mm}) \rightarrow f_{\mathrm{y}}=355 \mathrm{MPa}, f_{\mathrm{u}}=510 \mathrm{MPa}$.
${ }^{-} \mathrm{F}_{\mathrm{Ed}}=120 \mathrm{kN}$

SIMRLE CONNECTIONS Examples

Example: 3
Check the design of shear connection shown in Figure.

-Bolts 3M20(5.8), d $=20 \mathrm{~mm} ; \mathrm{d}_{0}=20+2=22 \mathrm{~mm}$, $A_{\mathrm{s}}=245 \mathrm{~mm}^{2}, f_{\mathrm{yb}}=400 \mathrm{MPa}, f_{\mathrm{ub}}=500 \mathrm{Mpa}$
$t=12 \mathrm{~mm}$ (gusset plate); $t_{1}=8 \mathrm{~mm}$ (angle)

SIMPLE CONNECTIONS Examples

Example: 3

Minimum and maximum spacing, end and edge distances checking (Table 3-3 EN 1993-1-8 : 2005 (E)):
$\mathrm{e}_{1 \text { min }}=1.2 \mathrm{~d}_{0}=1.2 \times 22=26.4 \mathrm{~mm} \leqslant 30 \mathrm{~mm} / \mathrm{OK} /$
$\mathrm{e}_{\mathrm{Im} \max }=4 \mathrm{t}+40 \mathrm{~mm}=4 \times 8+40=72 \mathrm{~mm}>30 \mathrm{~mm} / \mathrm{OK} /$
$\mathrm{e}_{2 \text { min }}=1.2 \mathrm{~d}_{0}=1.2 \times 22=26.4 \mathrm{~mm}<35 \mathrm{~mm} / \mathrm{OK} /$
$\mathrm{e}_{2 \max }=4 \mathrm{t}+40 \mathrm{~mm}=4 \times 8+40=72 \mathrm{~mm}>35 \mathrm{~mm} / \mathrm{OK} /$

SIMPLE CONNECTIONS Examples

Example: 3

Minimun and maximum spacing end and edge distances checking (Table 3-3 EN 1993-1-8 : 2005 (E)):
$\mathrm{p}_{1 \text { min }}=2.2 \mathrm{~d}_{0}=2.2 \times 22=48.4 \mathrm{~mm}<60 \mathrm{~mm} / \mathrm{OK} /$
$\mathrm{P}_{\text {İmax }}=\min .(14 \mathrm{t}=14 \times 8=112 ; 200)=112>60 \mathrm{~mm} / \mathrm{OK} /$

SIMPLE CONNECTIONS Examples

 Example: 3

The thread of a-fit bolt should be-included in the shear plane Design resistance for individual fastener subjected to shear per shear plane (Ťable 3-4 EN 1993-1-8: 2005 (E)):

$$
F_{v, R d}=\frac{\alpha_{v} f_{u b} A_{s}}{\gamma_{M 2}}=\frac{0.5 \times 500 \times 245}{1.25}=49000 \mathrm{~N}=49 \mathrm{kN}
$$

$\alpha_{r}=0.5$ for strength grades 4.8, 5.8,6.8 and 10.9

SIMRLE CONNECTIONS Examples

Example: 3

Bearing résistance (Table 3-4 EN 1993-1-8: 2005(E))

$$
\frac{k_{1} \alpha_{b} f_{u} d t}{\gamma_{M 2}}
$$

1- End bolts bearing on angle
$t_{1}=8 \mathrm{~mm}_{\mathrm{r}} f_{\mathrm{u}}=510 \mathrm{MPa}, d=20 \mathrm{~mm}, \gamma_{M 2}=1.25$

SIMPLE CONNECTIONS Examples

Example: 3

Bearing résistance (Table $3-4$ EN 1993-1-8: 2005 (E))
1- End bolts bearing on angle

$$
\alpha_{d}=\frac{e_{1}}{3 d_{0}}=\frac{30}{3 \times 22}=0.455
$$

$$
F_{b, R d}=\frac{k_{1} \alpha_{b} f_{u} d t}{\gamma_{M 2}}
$$

$\alpha_{b}=\min .\left(\alpha_{a} ; \frac{f_{u b}}{f_{u}} ; 1.0\right)=\min \left(0.455 ; \frac{500}{510}=0.98 ; 1.0\right)=0.455$

SIMPLE CONNECTIONS Examples

Example: 3

Bearing résistance (Table 3-4 EN 1993-1-8: 2005(E)) 1- End bolts bearing on angle
$k_{1} \cong \min \left(2.8 \frac{e_{2}}{d_{0}}-1.7 ; 2.5\right)=\min .\left(2.8 \times \frac{35}{22}-1.7 \cong 2.75 ; 2.5\right)=2.5$
$\widetilde{F}_{b, R d}=\frac{k_{1} \alpha_{b} f_{u} d t}{\gamma_{M 2}}=\frac{2.5 \times 0.455 \times 510 \times 20 \times 8}{1.25}=74256 \mathrm{~N} \cong 74.256 \mathrm{kN}$

SIMRLE CONNECTIONS Examples

Example: 3

Bearing résistance (Table 3-4 EN, 1993-1-8: 2005 (E))
1- Inner bolts bearing on angle
$t_{1}=8 \mathrm{~mm}, f_{\mathrm{u}}=510 \mathrm{MPa}, d=20 \mathrm{~mm}, \gamma_{M 2}=1.25$
$\alpha_{d}=\frac{p_{1}}{3 d_{0}}-\frac{1}{4}=\frac{60}{3 \times 22}-\frac{1}{4}=0.66$

SIMPLE CONNECTIONS Examples

Example: 3

Bearing fésistance (Table 3-4 EN 1993-1-8: 2005 (E))
1- Inner bolts bearing on angle
$\alpha_{b}=\min .\left(\alpha_{d} ; \frac{f_{u b}}{f_{u}} ; 1.0\right)=\min \left(0.66 ; \frac{500}{510}=0.980 ; 1.0\right)=0.66$
$F_{b, R d}=\frac{k_{1} \alpha_{b} f_{u} d t}{\gamma_{M 2}}=\frac{2.5 \times 0.66 \times 510 \times 20 \times 8}{1.25}=107712 \stackrel{N}{N}$

SIMRLE CONNECTIONS Examples

Example: 3

$\mathrm{F}_{\mathrm{V}, \mathrm{Rd}}=\mathrm{n}_{\mathrm{b}} \mathrm{F}_{\mathrm{Rd}, \text { mini }}$
$\mathrm{F}_{\mathrm{Rd}, \tilde{\mathrm{min}}}=\min .\left(\mathrm{F}_{\mathrm{V}, \mathrm{Rd}, 7}\left(\mathrm{~F}_{\mathrm{b}, \text { Rdi }}\right)=\min .(49 ; 74.256 ; 107.912)=49 \mathrm{kN}\right.$

SIMRLE CONNECTIONS Examples

Example: 4

The Fig. shows a fillet weld connection of a Gusset Plate (200x10) into steel column. The connection subjected to $\mathrm{N}_{\mathrm{Ed}}=100 \mathrm{kN}$,
$V_{\mathrm{Ed}}=100 \mathrm{kN}$,
$\mathrm{M}_{\mathrm{Ed}}=10 \mathrm{kN} . \mathrm{m}$.
Check the fillet welds needed to connect the gusset plate to the column using Grade S275 steel. (poor weld)

SIMRLE CONNECTIONS Examples

Steel S275 ($\mathrm{t}<40$) \rightarrow
$f_{\mathrm{u}}=275 \mathrm{MPa} ; f_{\mathrm{u}}=430 \mathrm{MPa}$
Directional methóod:
$\sqrt{\sigma_{\perp}^{2}+3\left(\tau_{\perp}^{2}+\tau_{\|}^{2}\right)} \leq \frac{f_{u}}{\beta_{w} \gamma_{M 2}}$ and $\sigma_{\perp} \leq \frac{0.9 f_{u}}{\gamma_{M 2}}$
Check $a_{w}=0.7 \mathrm{~S}=0.7(7)=4.9 \mathrm{~mm}$

$$
0.2 t_{\text {max }} \leq a_{\mathrm{w}} \leq 0.7 t_{\text {min }} \text { but } a_{\mathrm{w}} \geq 3 \mathrm{~mm}
$$

$$
0.2 \times 12=\mathbf{2 . 4} \leq a_{\mathrm{w}} \leq 0.7 \times 10=\mathbf{7 . 0} \gtrsim a_{\mathrm{w}, \min }=3 \mathrm{~mm}(4.5 .2-2)
$$

$$
a_{\mathrm{w}}=4.9 \mathrm{~mm} / \mathrm{OK} /
$$

SIMPLE CONNECTIONS Examples Directional method:

$$
\begin{aligned}
& \sqrt{\sigma_{\perp}^{2}+3\left(\tau_{\perp}^{2}+\tau_{\| I}^{2}\right)} \leq \frac{f_{u}}{\beta_{w} \gamma_{M 2}} \text { and } \sigma_{\perp} \leq \frac{0.9 f_{u}}{\gamma_{M 2}} \\
& A_{\mathrm{w}}=2 a \mathscr{L}_{\mathrm{eff}}=2 \times 4.9 \times(200-2 \times 4.9)=1864 \mathrm{~mm}^{2} \\
& W_{\mathrm{w}}=2 a \mathscr{L}_{\text {eff }}{ }^{2} / 6=2 \times 4.9 \times(200-2 \times 4.9)^{2} / 6=59087.5 \mathrm{~mm}^{3} \\
& \sigma_{0}=\frac{N_{E d}}{A_{w}}+\frac{M_{E d}}{W_{w}}=\frac{100 \times 10^{3}}{1864}+\frac{10 \times 10^{6}}{59087.5}=223 \mathrm{MPa} \\
& \sigma_{\perp}=\tau_{\perp}=\frac{\sigma_{w}}{\sqrt{2}}=\frac{223}{\sqrt{2}}=157.7 \mathrm{MPa}<\frac{0.9 \times 430}{1.25}=309.6 \mathrm{MPa} \\
& \tau_{\mathrm{x}}=\frac{V_{E d}}{A_{w}}=\frac{100 \times 10^{3}}{1864}=53.6 \mathrm{MPa} \\
& \sqrt{157.7^{2}+3\left(157.7^{2}+53.6^{2}\right)}=328.8 M P a<\left\{\begin{array}{l}
\frac{f u}{\beta_{w} \gamma_{M 2}}=\frac{430}{0.85 \times 1.25} \\
=404.7 \mathrm{MPa} \text { OK }
\end{array}\right.
\end{aligned}
$$

SIMRLE CONNECTIONS Examples

Simplified method

$$
\begin{aligned}
& \tau_{M}=\frac{M_{E d}}{W_{w}}=\frac{10 \times 10^{6}}{59087.5}=169.2 \mathrm{MPa} \\
& \tau_{N}=\frac{N_{E d}}{A_{w}}=\frac{100 \times 10^{3}}{1864}=53.6 \mathrm{MPa} \\
& \tau_{N}=\frac{V_{E d}}{A_{w}}=\frac{100 \times 10^{3}}{1864}=53.6 \mathrm{MPa}
\end{aligned}
$$

$\tau_{w}=\sqrt{\left(\tau_{M}+\tau_{N}\right)^{2}+\tau_{V}^{2}}=\sqrt{(169.2+53.6)^{2}+53.6^{2}}=229.2 \mathrm{MPa}<$

$$
\left\{\frac{f u}{\sqrt{3} \beta_{w} \gamma_{M 2}}=\frac{430}{\sqrt{3} \times 0.85 \times 1.25}=233.65 M P a \quad O K\right.
$$

SIMRLE CONNECTIONS Examplen 5

The Fig. shows a fillet weld connection of a Gusset Plate into steel column. The connection subjected to $V_{E d}=100 \mathrm{kN}$. Check the fillet welds needed to connect the gusset plate to the column using Grade S275 (poor weld)

SIMRLE CONNECTIONS Example 5

Steel S275 ($\mathrm{t}<40$) $\rightarrow f_{y}=275 \mathrm{MPa} ; f_{4}=430 \mathrm{MPa}, a_{w}=0.7 \mathrm{~S}=5.6 \mathrm{~mm}$ Check $a_{w}: 0.2 t_{\max } \leq a_{w} \leq 0.7 t_{\min }$ but $a_{w} \geq 3 \mathrm{~mm}$

$$
0 . \overline{2} \times 14=\mathbf{2 . 8} \leq a_{w} \leq 0.7 \times 12=\mathbf{8 . 4} \curvearrowright a_{w, \text { min }}=3 \mathrm{~mm}
$$

(4.5.2-2)
$a_{\mathrm{w}}=5.6 \mathrm{~mm} / \mathrm{OK} /$

SIMRLE CONNECTIONS Example: 5

$\mathrm{Yc}=\Sigma \mathrm{Li} \mathrm{Yi} / \Sigma \mathrm{Li}=(250 \times 0+150 \times 75 \times 2) /(250+150 * 2)=40.91 \mathrm{~mm}$
$\mathrm{e}_{\mathrm{W}}=200+150-40.91=309.1 \mathrm{~mm} \quad V_{E z}=V_{E d}=150 \mathrm{kN}$
$M_{E d, T}=V_{E d} \cdot e_{w}=150 \times 309.1=46365 \mathrm{KN} . \mathrm{mm}=46.365 \mathrm{kN} . \mathrm{m}$

SIMRLE CONNECTIONS Example: 5

$r_{1}=\sqrt{y_{1}{ }^{2}+z_{1}{ }^{2}}=\sqrt{(109.09)^{2}+(125)^{2}}=165.91 \mathrm{~mm}$
$I_{w y}=250^{3} \times 5.6 / 12+2 \times 150 \times 5.6 \times 125^{2}=33.54 \times 10^{6} \mathrm{~mm}^{4}$
$I_{w z}=2\left[150^{3} \times 5.6 / 12+150 \times 5.6 \times(109.09-75)^{2}\right]+250 \times 5.6 \times 40.91^{2}=$
$\mathrm{A}_{\mathrm{w}}=(2 \times 150+250) \times 5.6$
$A_{w}=3080 \mathrm{~mm}^{2}$
$\mathrm{I}_{\mathrm{w}}=\mathrm{I}_{\mathrm{wy}}+\mathrm{I}_{\mathrm{wz}}$
$\mathrm{I}_{\mathrm{wo}}=41 \times 10^{6} \mathrm{~mm}^{4}$
$\cos \theta=125 / 165.91=$ 0.753
$\operatorname{Sin} \theta=109.09 / 165.91=$ 0.658

SIMPLE CONNECTIONS Example 5

$\tau_{\mathrm{M}, \mathrm{T}}=M_{\mathrm{Ed}, \mathrm{T}^{\prime}} r_{1} / I_{\mathrm{wo}}=46.365 \times 10^{6} \times 165.91 / 41 \times 10^{6}=187.62 \mathrm{~N} / \mathrm{mm}^{2}$
$\tau_{M, T, Y}=\tau_{M, T} \cdot \operatorname{Cos} \theta=187.62 \times 0.753=141.28 \mathrm{~N} / \mathrm{mm}^{2}$
$\tau_{M, T, Z}=\tau_{M, T} . \operatorname{Sin} \theta=187.62 \times 0.658=123.45 \mathrm{~N} / \mathrm{mm}^{2}$
$\tau_{\mathrm{v}, \mathrm{z}}=\mathcal{V}_{\mathrm{Ed}} / \mathrm{A}_{\mathrm{w}}=$
$=150 \times 10^{3} / 3080$
$=48.7 \mathrm{~N} / \mathrm{mm}^{2}$

SIMPLE CONNECTIONS Example 5

$$
\tau_{w}=\sqrt{\left(\tau_{M, T, y}\right)^{2}+\left(\tau_{M_{1} T_{, Z}}+\tau_{v, z}\right)^{2}}=\sqrt{(141.28)^{2}+(123.45+48.7)^{2}}
$$

$$
\cong 222.7 \mathrm{~N} / \mathrm{mm}^{2}<f_{v w, d} \quad \mathrm{OK}
$$

$$
f_{v w, d}=\frac{F_{u}}{\sqrt{3} \beta_{w} \gamma_{M 2}} \frac{430}{\sqrt{3} \times 0.85 \times 1.25}=233.66 \mathrm{MPa}
$$

SIMRLE CONNECTIONS Example: 6

The connection shown in the Fig is subjected to factored compressive force of 550 kN and a factored moment of $10 \mathrm{kN} . \mathrm{m}$. Find the length L1 and L2 of the weld. S355 and the size of the weld is 5 mm . (poor weld at the start and the stop)

Check $a_{w}: 0.2 t_{\text {max }} \leq a_{w} \leq 0.7 t_{\text {min }}$ but $a_{w} \geq 3 \mathrm{~mm}$ $0.2 \times 15=\mathbf{3} \leq a_{\mathrm{w}} \leq 0.7 \times 12=8.4>a_{\mathrm{w}, \text { min }}=3$ (4.5.2-2) $\mathrm{AOK} /$
Steel Section Properties L150X75X15 $\rightarrow C_{y}=55.2 \mathrm{~mm}$, $C_{\mathrm{Z}}=18.1 \mathrm{~mm}, A=3170 \mathrm{~mm}^{2}$

SIMRLE CONNECTIONS Example 6

$\Sigma \mathrm{MB}=0 \rightarrow 550 \times(150-55.2)=\mathrm{F} 1 \times 150+10 \times 10^{3} \rightarrow \mathrm{~F} 1=280.94 \mathrm{kN}$ $\mathrm{F} 1 / 2=140.47 \mathrm{kN}$ at each face.
$F 1+F 2=F \rightarrow F 2=550-280.94=269.06 \mathrm{kN} \rightarrow F 2 / 2=134.53 \mathrm{kN}$ at each face.

$$
f_{v w, d}=\frac{F_{u}}{\sqrt{3} \beta_{w} \gamma_{M 2}}=\frac{510}{\sqrt{3} \times 0.9 \times 1.25}=261.73 \mathrm{~N} / \mathrm{mm}^{2}
$$

$\mathrm{A}_{1, w}=\left(\mathrm{L}_{\text {leff }}\right) \times a \rightarrow \mathcal{T}_{\mathrm{I}}=(0.5 \mathrm{~F} 1) / \mathrm{A}_{1, w} \geqslant f_{\mathrm{vw}, \mathrm{d}} \rightarrow 261.73=140.47 \times 10^{3} /\left(\mathrm{ax} \mathrm{L}_{\text {leff }}\right)$ $\rightarrow \mathrm{L}_{\text {1eff }}=153.34 \mathrm{~mm} \rightarrow \mathrm{~L}_{\text {1eff }}=\mathrm{L}_{\mathrm{t}}-2 \mathrm{a} \rightarrow \mathrm{L}_{\mathrm{t}}=153.34+7=160.34 \mathrm{~mm}$ \rightarrow as recommended by the code, a continues return weld of length $2 S$ at edge A has to be provided then $\mathrm{L}_{1}=160.34+2 \times 5=170.34 \mathrm{~mm} \therefore$ use 175 mm

SIMRLE CONNECTIONS Example 6

$\mathrm{A}_{2, \mathrm{w}}=\left(\mathrm{L}_{\text {2eff }}\right) \times \mathrm{a} \rightarrow \tau_{2}=(0.5 \mathrm{~F} 2) / \mathrm{A}_{2, \mathrm{w}}=\mathrm{f}_{\mathrm{ww}, \mathrm{d}} \rightarrow 261.73=134.53 \times 10^{3} /\left(\mathrm{a} \times \mathrm{L}_{\text {2eff }}\right)$ $\rightarrow L_{\text {2eff }}=146.86 \mathrm{~mm} \rightarrow L_{2 \text { eff }}=L_{2}-2 a \rightarrow L_{2}=146.56+7=153.56 \mathrm{~mm}$ \rightarrow as recommended by the code, a continues return weld of length 2 S at edge B has to be provided then $L_{2}=153.56+2 \times 5=163.56 \mathrm{~mm} . \therefore$ use 165 mm

