
Faculty of Civil Engineering	Job No.	Sheet 1 of 8	Rev:
	Job title		
	Subject: Example- Un-Restrained Beam with end moments		
	Client: 4th YEAR- Faculty of	Made by: SCI	Date:
CALCULATION SHEET	civil Engineering	Checked by: Dr. G. Hallak	Date:

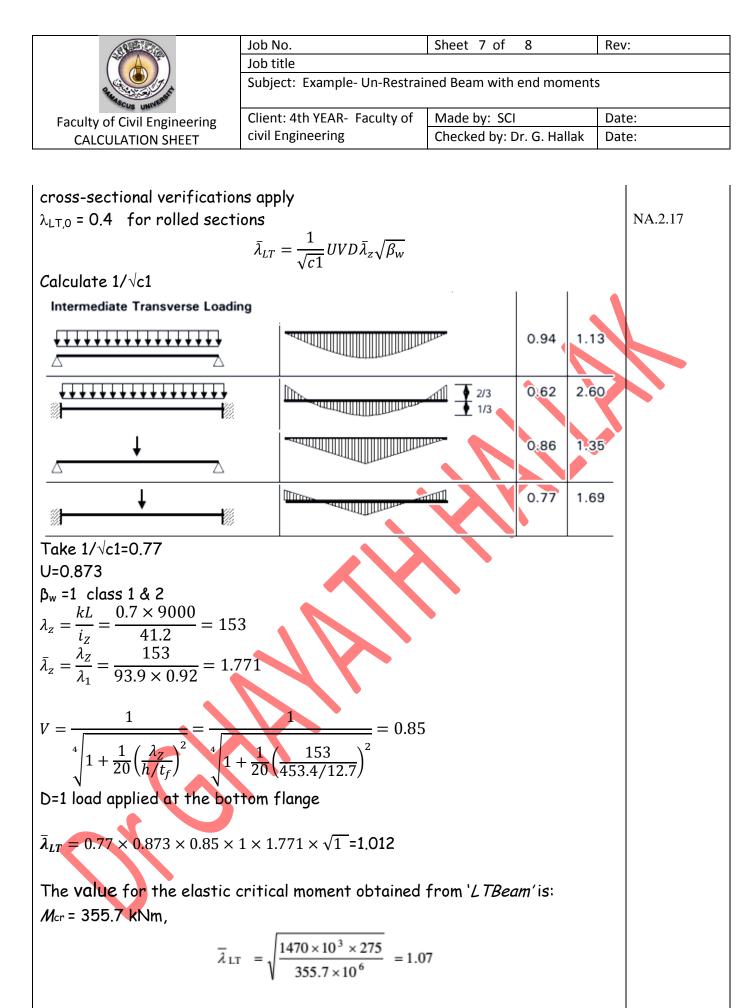
	Job No.	Sheet 3 of 8	Rev:
	Job title		
Russelle Invites	Subject: Example- Un-Restrained Beam with end moments		
Faculty of Civil Engineering	Client: 4th YEAR- Faculty of	Made by: SCI	Date:
CALCULATION SHEET	civil Engineering	Checked by: Dr. G. Hallak	Date:

1.4 Buckling length (Lcr)

Since the beam is unrestrained between the supports, there is only one segment to consider in this example, with a length equal to the beam length. BS EN 1993-1-1 does not give guidance for determining buckling lengths. For beams, the buckling length should be taken as being equal to the span length unless the designer considers the beam to be restrained. Lcr = 9.0 m

1.5 Section properties

 $\begin{array}{ll} \mbox{Trial section can be calculated as follows:} \\ M_{b,Rd}=\chi_{LT} \ W_{pl,y} \ f_{y}/\gamma_{M0}=M_{Ed} \ \Rightarrow \ W_{pl,y}= M_{Ed}/(\ \chi_{LT} \ f_{y}/\gamma_{M0}) \ \Rightarrow \\ W_{pl,y}=260\times 106/(0.65\times 275)=1454\cm3 \\ \mbox{Chose from the UKB section tables a section has } W_{pl,y} > 1454\cm3 \\ \mbox{Try section } 457\times 191\times 67 \ UKB \ in \ S275 \ with \ W_{pl,y} = 1470\ \ cm3 \\ \mbox{From section property tables:} \\ \mbox{Depth} \ h = 453.1\ \ mm \end{array}$


A CONTRACTOR OF THE OWNER	Job No.	Sheet 4 of 8	Rev:		
	Job title				
STANSCUS UNIVERSIT	Subject: Example- Un-Restrained Beam with end moments				
Faculty of Civil Engineering	Client: 4th YEAR- Faculty of	Made by: SCI	Date:		
CALCULATION SHEET	civil Engineering	Checked by: Dr. G. Hallak	Date:		

Width	b = 189.9 mm	
Web thickness	t _w = 8.5 mm	
Flange thickness	t _f = 12.7 mm	
Root radius	r = 10.2 mm	
Depth between flange fillets	d = 407.6 mm	
Second moment of area, y -y axis	I _y = 29400 cm4	
Second moment of area, z -z axis	I _z = 1450 cm4	
Plastic modulus, y -y axis	W _{pl,y} = 1 470 cm3	
Area	A = 85.5 cm2	
Buckling parameter	U=0.873	
Torsional constant	I _⊤ = 37.1 cm4	
Warping constant	I _w = 0.311×106 cm6	
Modulus of elasticity	E = 210 000 N/mm2	
For S275 steel and $t \le 16$ mm		BS EN
Yield strength	$f_{\rm V} = R_{\rm eH} = 275 \rm N/mm^2$	10025-2
/ loid off olight		Table 7
1.6 Cross section classifica		Table 7
1.6 Cross section classifica		Table 7
		Table 7 Table 5.2
1.6 Cross section classifice $\varepsilon = \sqrt{\frac{235}{f_y}} = \sqrt{\frac{235}{275}} = 0.92$		
1.6 Cross section classified $\varepsilon = \sqrt{\frac{235}{f_y}} = \sqrt{\frac{235}{275}} = 0.92$ Outstand of compression flange	ation	
1.6 Cross section classifica	ation	
1.6 Cross section classified $\varepsilon = \sqrt{\frac{235}{f_y}} = \sqrt{\frac{235}{275}} = 0.92$ Outstand of compression flange $c = \frac{b - t_w - 2r}{2} = \frac{189.9 - 8.5 - (2 \times 10.2)}{2}$	ation	
1.6 Cross section classified $\varepsilon = \sqrt{\frac{235}{f_y}} = \sqrt{\frac{235}{275}} = 0.92$ Outstand of compression flange	ation	
1.6 Cross section classified $\varepsilon = \sqrt{\frac{235}{f_y}} = \sqrt{\frac{235}{275}} = 0.92$ Outstand of compression flange $c = \frac{b - t_w - 2r}{2} = \frac{18999 - 8.5 - (2 \times 10.2)}{2}$ $\frac{c}{t_f} = \frac{80.5}{12.7} = 6.34$	ation = 80.50 mm	
1.6 Cross section classified $\varepsilon = \sqrt{\frac{235}{f_y}} = \sqrt{\frac{235}{275}} = 0.92$ Outstand of compression flange $c = \frac{b - t_w - 2r}{2} = \frac{189!9 - 8.5 - (2 \times 10.2)}{2}$ $\frac{c}{t_f} = \frac{80.5}{12.7} = 6.34$ The limiting value for Class 1 is $\frac{c}{t_f}$	ation = 80.50 mm	
1.6 Cross section classified $\varepsilon = \sqrt{\frac{235}{f_y}} = \sqrt{\frac{235}{275}} = 0.92$ Outstand of compression flange $c = \frac{b - t_w - 2r}{2} = \frac{189!9 - 8.5 - (2 \times 10.2)}{2}$ $\frac{c}{t_f} = \frac{80.5}{12.7} = 6.34$ The limiting value for Class 1 is $\frac{c}{t_f}$ 6.34 × 8.28	ation = 80.50 mm $\epsilon \le 9\varepsilon = 9 \times 0.92 = 8.28$	
1.6 Cross section classified $\varepsilon = \sqrt{\frac{235}{f_y}} = \sqrt{\frac{235}{275}} = 0.92$ Outstand of compression flange $c = \frac{b - t_w - 2r}{2} = \frac{189!9 - 8.5 - (2 \times 10.2)}{2}$ $\frac{c}{t_f} = \frac{80.5}{12.7} = 6.34$ The limiting value for Class 1 is $\frac{c}{t_f}$	ation = 80.50 mm $\epsilon \le 9\varepsilon = 9 \times 0.92 = 8.28$	
1.6 Cross section classified $\varepsilon = \sqrt{\frac{235}{f_y}} = \sqrt{\frac{235}{275}} = 0.92$ Outstand of compression flange $c = \frac{b - t_w - 2r}{2} = \frac{189!9 - 8.5 - (2 \times 10.2)}{2}$ $\frac{c}{t_f} = \frac{80.5}{12.7} = 6.34$ The limiting value for Class 1 is $\frac{c}{t_f}$ 6.34 < 8.28 Therefore the flange is Class 1 und	ation = 80.50 mm $\epsilon \le 9\varepsilon = 9 \times 0.92 = 8.28$	
1.6 Cross section classified $\varepsilon = \sqrt{\frac{235}{f_y}} = \sqrt{\frac{235}{275}} = 0.92$ Outstand of compression flange $c = \frac{b - t_w - 2r}{2} = \frac{18999 - 8.5 - (2 \times 10.2)}{2}$ $\frac{c}{t_f} = \frac{80.5}{12.7} = 6.34$ The limiting value for Class 1 is $\frac{c}{t_f}$ 6.34 × 8.28 Therefore the flange is Class 1 und Web subject to bending	ation = 80.50 mm $\epsilon \le 9\varepsilon = 9 \times 0.92 = 8.28$	
1.6 Cross section classified $\varepsilon = \sqrt{\frac{235}{f_y}} = \sqrt{\frac{235}{275}} = 0.92$ Outstand of compression flange $c = \frac{b - t_w - 2r}{2} = \frac{189!9 - 8.5 - (2 \times 10.2)}{2}$ $\frac{c}{t_f} = \frac{80.5}{12.7} = 6.34$ The limiting value for Class 1 is $\frac{c}{t_f}$ 6.34 < 8.28 Therefore the flange is Class 1 und	ation = 80.50 mm $\epsilon \le 9\varepsilon = 9 \times 0.92 = 8.28$	

	Job No.	Sheet 5 of 8	Rev:
Faculty of Civil Engineering CALCULATION SHEET	Job title		
	Subject: Example- Un-Restrained Beam with end moments		
	Client: 4th YEAR- Faculty of	Made by: SCI	Date:
	civil Engineering	Checked by: Dr. G. Hallak	Date:

The limiting value for Class 1 is $\frac{c}{t_w} \le 72\varepsilon = 72 \times 0.92 = 66.24$	
47.95 < 66.24	
Therefore the web is Class 1 under bending.	
Therefore the section is Class 1 under bending.	
1.7 Partial factors for resistance	
$\gamma_{M0} = 1.0$	
$\gamma_{M1} = 1.0$	NA.2.15
1.8 Cross-sectional resistance	
1.8.1 Shear buckling	
The shear buckling resistance for webs should be verified according to	6.2.6(6)
Section 5 of BS EN 1993-1-5 if:	
$\frac{h_w}{t_w} > \frac{72\varepsilon}{\eta}$	
η = 1.0	BS EN 1993-
$h_{\rm w} = h - 2t_{\rm f} = 453.4 - (2 \times 12.7) = 428.0 {\rm mm}$	1-5 NA.2.4
$h_{\rm W} = 428.0$	
$\frac{w}{t_w} = \frac{1}{8.5} = 50.35$	
$\frac{72\varepsilon}{10} = \frac{72 \times 0.92}{100} = 66.2$	
50.35 < 66.2	
50.55 × 00.2	
Therefore the shear buckling resistance of the web does not need to be	
verified.	
1.8.2 Shear resistance	
Verify that:	6.2.6(1)
$\frac{V_{Ed}}{V_{c,Rd}} \le 1.0$	Eq (6.17)
$V_{c,Rd} = V_{pl,Rd} = \frac{A_V \times f_y}{\gamma_{M0} \times \sqrt{3}}$	
$\gamma_{M0} \times \sqrt{3}$ $A_{V}=A -2 t_{f} b + (t_{w}+2r) t_{f} \ge \eta h_{w} t_{w}$	6.2.6(3)
	0.2.0(0)

	Job No.	Sheet 6 of 8	Rev:
	Job title		
Studies and the state	Subject: Example- Un-Restrai	ned Beam with end moment	S
Faculty of Civil Engineering	Client: 4th YEAR- Faculty of	Made by: SCI	Date:
CALCULATION SHEET	civil Engineering	Checked by: Dr. G. Hallak	Date:
A _V <i>=</i> 85.5×10 ² -(2×189.9×12.	7)+12.7×[8.5+(2×10.2)] =40)93.57mm ²	
η h _w t _w =1.0×428×8.5 =363	8.0mm ²		
Therefore,			
<i>A</i> v = 4093.57 mm ²			
$V_{a,p,d} =$	$V_{pl,Rd} = \frac{4093.57 \times 275}{1.0 \times \sqrt{3}} = 6$	50.0 <i>kN</i>	
-	curs at A, therefore the c	lesign shear is	
V _{A,Ed} = 140 kN	V_{Ed} 140		
	$\frac{V_{Ed}}{V_{CRd}} = \frac{140}{650} = 0.22 \le 1.0$		
Therefore the shear resi	stance of the section is ac	leguate.	
·	·		
1.8.3 Resistance to be	ndina		
Verify that:		XV	
	M _{Ed}		6.2.5(1)
	$\frac{M_{Ed}}{M_{c,Rd}} \le 1.0$		Eq (6.12)
At the point of maximum	bending moment (at A), ve	rify whether the shear	
force will reduce the ben	ding resistance of the cros	ss section.	6.2.8(2)
	$\frac{V_{c,Rd}}{2} = \frac{650}{2} = 325 kN$		
Characteristic in the			
	bending moment $V_{A,Ed}$ = 140	JIKIN	
140 kN < 325 kN		the allocation of the second second	
	in bending resistance due	to shear is required.(1	_ow
shear)			
The design resistance for	bending for Class 1 and 2	cross sections is:	6.2.5(2)
$M_{c,Rd} = M_{pl,Rd} = W_p$	bending for Class 1 and 2 $\frac{I,y \times f_y}{\gamma_{M0}} = \frac{1470 \times 10^3 \times 275}{1.0}$ $\frac{M_{Ed}}{M_{Ed}} = \frac{260}{0.64 < 1.0}$	$\frac{1}{2} \times 10^{-6} = 404 kN.m$	Eq (6.13)
	M_{Ed} 260		6.2.5(1)
	$\frac{M_{Ed}}{M_{c,Rd}} = \frac{260}{404} = 0.64 < 1.0$		Eq (6.12)
	oment resistance is adequa	ate.	
Therefore the bending m			
Therefore the bending m			
Therefore the bending marked bending marked by the bending by the bendi		ending	
1.9 Buckling resisto	nce of member in b ackling slenderness ($\overline{\lambda}_{LT}$)	•	6.3.2.2(4)

1.012 > 0.4 (λ LT,0)

	Job No.	Sheet 8 of 8	Rev:
	Job title		
	Subject: Example- Un-Restrained Beam with end moments		
Faculty of Civil Engineering	Client: 4th YEAR- Faculty of	Made by: SCI	Date:
CALCULATION SHEET	civil Engineering	Checked by: Dr. G. Hallak	Date:

Therefore the resistance to lateral-torsional buckling must be verified	6.3.2.2(4)
$\frac{M_{Ed}}{M_{h,Rd}} \le 1.0$	6.3.2.1(1) Eq (6.54)
The design buckling resistance moment $(M_{b,Rd})$ of a laterally unrestrained beam is determined from:	6.3.2.1(3) Eq (6.55)
$M_{b,Rd} = \chi_{Lt} \frac{W_y f_y}{\gamma_{M1}}$	
$W_y = W_{pl,y}$ for Class 1 and 2 cross-sections	
For UKB sections, the method given in 6.3.2.3 for determining χ_{LT} for rolled sections may be used. Therefore	
$\chi_{LT} = \frac{1}{\phi_{LT} + \sqrt{\phi_{LT}^2 - \beta \overline{\lambda}_{LT}^2}} but \begin{cases} \chi_{LT} \leq 1.0\\ \chi_{LT} \leq \frac{1}{\overline{\lambda}_{LT}^2} \end{cases}$ $\phi_{LT} = 0.5 \left[1 + \alpha_{LT} (\overline{\lambda}_{LT} - \overline{\lambda}_{LT,0}) + \beta \overline{\lambda}_{LT}^2 \right]$	6.3.2.3(1) Eq (6.57)
$\phi_{LT} = 0.5 \left[1 + \alpha_{LT} (\lambda_{LT} - \lambda_{LT,0}) + \beta \lambda_{LT} \right]$ From the UK National Annex, $\overline{\lambda}_{LT,0} = 0.4$ and $\beta = 0.75$ $\frac{h}{h} = \frac{453.4}{189.9} = 2.39$	NA.2.17
2 < 2.39 < 3.1, therefore use buckling curve 'c'	NA.2.17
For buckling curve 'c', $\alpha_{LT} = 0.49$	NA.2.16 & Table 6.5
$\phi_{LT} = 0.5 [1 + 0.49(1.012 - 0.4) + 0.75 \times 1.012^{2}] = 1.034$	
$\chi_{LT} = \frac{1}{1.034 + \sqrt{1.034^2 - 0.75 \times 1.012^2}} = 0.63$	
$\frac{1}{\overline{\lambda}_{LT}^2} = \frac{1}{1.012^2} = 0.97$	
0.63 < 0.97 < 1.0 Therefore,	
$\chi_{LT} = 0.63$ To account for the shape of the bending moment distribution, χ_{LT} may be modified by the use of a factor 'f'.	
$\chi_{LT,mod} = \frac{\chi_{LT}}{f} but \chi_{LT,mod} \leq 1.0$	6.3.2.3(2)
$f = 1 - 0.5 (1 - K_c) \left[1 - 2.0 (\overline{\lambda}_{LT} - 0.8)^2 \right] but f \le 1.0$	

Faculty of Civil Engineering	Job No.	Sheet 9 of 8	Rev:
	Job title		
	Subject: Example- Un-Restrained Beam with end moments		
	Client: 4th YEAR- Faculty of	Made by: SCI	Date:
CALCULATION SHEET	civil Engineering	Checked by: Dr. G. Hallak	Date:

$$f = 1 - 0.5(1 - 0.77) \left[1 - 2.0(1.012 - 0.8)^2 \right] = 0.895$$

$$\chi_{LT,mod} = \frac{\chi_{LT}}{f} = \frac{0.63}{0.895} = 0.7$$

$$M_{b,Rd} = \chi_{Lt,mod} \frac{W_y f_y}{\gamma_{M1}} = 0.7 \times 1470 \times 10^3 \times 275 \times 10^{-6} / 1.0 = 283 k N.m$$
$$\frac{M_{A,Ed}}{M_{b,Rd}} = \frac{260}{283} = 0.92 \le 1.0$$

Therefore the design buckling resistance moment of the member is adequate.

2.8 Vertical deflection at serviceability limit state

The vertical deflections should be verified.