1- The Second moment of area, The MOMENT OF INERTIA: (mm ${ }^{4}, \mathrm{~m}^{4}$)
The Moment of Inertia (I) is a term used to describe the capacity of a cross-section to resist bending. It is always considered with respect to a reference axis such as Z or Y. It is a mathematical property of a section concerned with a surface area and how that area is distributed about the reference axis. The reference axis is usually a centroidal axis (NOT " Y \& Z " axes shown in the Fig). The moment of Inertia expressed mathematically as:

$$
I_{Z}=\int_{A} Y^{2} d A, I_{Y}=\int_{A} Z^{2} d A
$$

1- The Second moment of area, The MOMENT OF

 INERTIA: ($\mathrm{mm}^{4}, \mathrm{~m}^{4}$) The Moment of Inertia is an important value which is used to determine the state of stress in a section, to calculate the resistance to buckling, and to determine the amount of deflection in a beam.

Both boards have the same cross-sectional area, but the area is distributed differently about the horizontal centroidal axis.

1- The Second moment of area, The MOMENT OF

 INERTIA: ($\mathrm{mm}^{4}, \mathrm{~m}^{4}$)DETERMINATION OFTHE MOMENT OF INERTIA OF AN AREA BY INTEGRATION

The moment of inertia of an area is always positive

2- The polar moment of Inertia $\left(\mathrm{mm}^{4} \mathrm{~m}^{4}\right)$
Polar moment of inertia, denoted by J_{0} or I_{p}, is the area moment of inertia about the X-axis (perpendicular to plan of cross-section area) given by:

$$
\begin{aligned}
& I_{p}=J_{o}=\int_{A} l^{2} d A=\int_{A}\left(Z^{2}+Y^{2}\right) d A \\
& =\int_{A} Z^{2} d A+\int_{A} Y^{2} d A \\
& I_{p}=J_{o}=I_{Y}+I_{Z}
\end{aligned}
$$

This integral of great impoitance in problems concerning the torsion of cylindrical shafts and in problems dealing with the rotation of slabs

3- Radíus of gyration $\left(\mathrm{mm}^{3}, \mathrm{~m}^{3}\right)$

The radius of gyration is the distance r away from the axis that all the area can be concentrated to result in the same moment of inertia. That is,

$$
I=r^{2} A=i^{2} A
$$

3- Radius of gyration $\left(\mathrm{mm}^{3}, \mathrm{~m}^{3}\right)$

For a given area, one can define the radius of gyration around the γ-axis, denoted by $r_{\mathrm{Y}},\left(i_{\mathrm{Y}}\right)$ the radius of gyration around the Z-axis, denoted by $r_{z},\left(i_{z}\right)$ and the radius of gyration around the X-axis, denoted by $r_{0},\left(i_{0}\right)$. These are calculated from the relations:

3- Radíus of gyration $\left(\mathrm{mm}^{3}, \mathrm{~m}^{3}\right)$

$$
\begin{aligned}
& i_{Z}^{2}=r_{Z}^{2}=\frac{I_{Z}}{A}, \quad i_{\gamma}^{2}=r_{\gamma}^{2}=\frac{I_{Y}}{A}, \quad i_{o}^{2}=r_{o}^{2}=\frac{J_{o}}{A} \\
& i_{Z}=r_{Z}=\sqrt{\frac{I_{Z}}{A}}, \quad i_{\gamma}=r_{Y}=\sqrt{\frac{I_{Y}}{A}}, \quad i_{o}=r_{o}=\sqrt{\frac{J_{O}}{A}}
\end{aligned}
$$

3- Radius of gyration $\left(\mathrm{mm}^{3}, \mathrm{~m}^{3}\right)$

It can easily to show from $J_{O}=I_{Y}+I_{Z}$ that

$$
r_{Z}^{2}+r_{Y}^{2}=r_{O}^{2}
$$

4- Prodúct of Inertia ($\mathrm{mm}^{4}, \mathrm{~m}^{4}$)
The product second moment of area, $I_{z y}$, of a beam section with respect to z and y axes is defined by:

$$
I_{Z Y}=\int_{A} Z Y d A
$$

when one (or both) of the coordinate axes is an axis of symmetry

$$
\Longrightarrow I_{z y}=0
$$

5- Parallel-Axis Theorems:

Suppose that we know the value of I_{y}, I_{z} and $I_{z r}$. We need to determine the value of $I_{Y 1}, I_{Z 1}$ and $I_{Y 1 Z 1}$ (moment of Inertia according to the new axes Y1 and Z1 "parallel axis")

$$
\begin{aligned}
& I_{Z 1}=\int_{A} Y_{1}^{2} d A \\
& I_{Z 1}=\int_{A}(Y+d Y)^{2} d A
\end{aligned}
$$

$$
\tilde{I}_{Z 1}=\int_{A} Y^{2} d A+d Y^{2} \int_{A} d A+2 d Y \int_{A} Y d A
$$

5- Parallel-Axis Theorems:
$I_{Z 1}=I_{Z}+2 d Y \mathrm{Q}_{Z}+d Y^{2} A$
Similarly

$$
I_{Y 1}=I_{Y}+2 d Z \mathrm{Q}_{\mathrm{Y}}+d Z^{2} A
$$

Product of Inertia

$$
I_{Z 1 Y 1}=\int Y_{1} Z_{1} d A=\int_{A}(\tilde{Y}+d Y)(Z+d Z) d A
$$

$$
I_{\text {Z AV } 1}=\int_{A} Y Z d A+d Y \int_{A} Z d A+d Z \int_{A} Y d A+d Y d Z \int_{A} d A
$$

$$
I_{Z \mid Y 1}=I_{Z Y}+d Y \mathrm{Q}_{Y}+d Z \mathrm{Q}_{Z}+d Y d Z A
$$

5- Parallel-Axis Theorems:

IF Z \& Y are CENTROIDAL axes
Then

$$
\begin{gathered}
I_{Z 1}=I_{G Z}+d Y^{2} A \\
I_{Y 1}=I_{G Y}+d Z^{2} A \\
I_{Z 1 Y 1}=I_{G Z Y}+d Y d Z A
\end{gathered}
$$

It can be seen from Eqs. above that if either $\mathrm{G} Z$ or $G Y$ is Z_{1} an axis of symmetry, i.e. $I_{G Z Y}$
$=0$, then $I_{Z 1 Y 1}=d Y d Z A$
Thus for a section component having an axis of symmetry that is parallel to either of the section reference axes the product second moment of area is the product of the coordinates of its centroid multiplied by its area.

5- MOMENTS OF INERTIA OF COMPOSITE AREAS

EXAMPLS- DETERMINATION OF THE MOMENT OF INERTIA OF AN AREA BY INTEGRATION

Determine the moment of inertia for the rectangular area with respect to (a) the centroidal x^{\prime} axis, (b) the centroidal x^{\prime} axis, (c) the axis x_{b} passing through the base of the rectangular, and (d) the pole or z^{\prime} axis perpendicular to the $x^{\prime}-y^{\prime}$ plane and passing through the centroid C.
Part (a)
Differential element chosen đdistance y^{\prime} from x^{\prime} axis.
Since $d A=b d y$
$\bar{I}_{x}=\int_{A} y^{\prime 2} d A=\int_{-h / 2}^{h / 2} \mathcal{y}^{\prime 2}\left(b d y^{\prime}\right)=b \int_{-h / 2}^{h / 2}$
$I_{x}=b\left[\frac{y^{\prime 3}}{3}\right]_{-h / 2}^{+h / 2}=\frac{1}{12} b h^{3}$

EXAMPLS- DETERMINATION OF THE MOMENT OF INERTIA OF

 AN AREA BY INTEGRATIONPart (b)
Differential element chosen, distance x^{\prime} from $\widehat{y^{\prime}}$ axis.
Since $\mathrm{dA}=\mathrm{hdx}$,
$\bar{I}_{y}=\int_{A} x^{\prime 2} d A=\int_{-b / 2}^{b / 2} x^{\prime 2}\left(h d x^{\prime}\right)=h \int_{-b / 2}^{b / 2} x^{\prime 2} d y$
$\bar{I}_{y}=h\left[\frac{x^{\prime 3}}{3}\right]_{-b / 2}^{+b / 2}=\frac{1}{12} h b^{3}$
Part (c)
By applying parallel axis theorem;

$$
I_{x}=I_{x}+A d^{2}=\frac{1}{12} b h^{3}+b h\left(\frac{h}{2}\right)^{2}=\frac{1}{3} b h^{3}
$$

EXAMPLS- DETERMINATION OF THE MOMENT OF INERTIA OF AN AREA BY INTEGRATION

Part (d)
For polar moment of inertia about point C,

$$
J_{C}=\bar{I}_{x^{x}}+\bar{I}_{y^{\prime}}=\frac{1}{12} b h\left(h^{2}+b^{2}\right)
$$

For radius of gyration about axis $x^{\prime}, y^{\prime} \& p^{2} \operatorname{point}^{\prime} \mathcal{C}$
$\hat{r}_{x^{\prime}}=\sqrt{\frac{\bar{I}_{x^{\prime}}}{A}}=\sqrt{\frac{b h^{3} / 2}{b h}}=\frac{h}{2 \sqrt{3}}$
$r_{y^{\prime}}=\sqrt{\frac{\vec{I}_{y^{\prime}}}{A}}=\sqrt{\frac{h b^{3} \neq 12}{b h}}=\frac{b}{2 \sqrt{3}}$
$r_{C}{ }^{2}=r_{z^{\prime}}{ }^{2}=r_{x^{\prime}}{ }^{2}+r_{y^{\prime}}{ }^{2}=\frac{h^{2}}{12}+\frac{b^{2}}{12}=\frac{h^{2}+b^{2}}{12}$

EXAMPLS- DETERMINATION OF THE MOMENT OF INERTIA OF AN AREA BY INTEGRATION

Determine the moment of inertia of a triangle with respect to its base.
$d I_{x}=y^{2} d A, d A=e d y$
Using similar triangles, we have

$$
\frac{l}{b}=\frac{h-y}{h} \Rightarrow l=b \frac{h-y}{h}, \therefore d A=b \frac{h-y}{h} d y
$$

$$
I_{x}=\int y^{2} d A=\int_{0}^{h} y^{2} b \frac{h-y}{h} d y=\frac{b}{h} \int_{0}^{h}\left(h y^{2}-y^{3}\right) d y
$$

$$
I_{x}=\frac{b}{h}\left[h \frac{y^{3}}{3}-\frac{y^{4}}{4}\right]_{0}^{h}=\frac{b h^{3}}{12}
$$

EXAMPLS- DETERMINATION OF THE MOMENT OF INERTIA OF

 AN AREA BY INTEGRATIONDetermine the moment of inertia for the area with respect to x_{G} axis

By applying parallel axis theorem,
$I_{x}=\bar{I}_{x G}+A d^{2} \Rightarrow \bar{I}_{x G}=I_{x}-A d^{2}$
$\tilde{I}_{x G}=\frac{1}{12} b h^{3}-\frac{b h}{2}\left(\frac{h}{3}\right)^{2}=\frac{1}{36} b h^{3}$

EXAMPLS- DETERMINATION OF THE MOMENT OF INERTIA OF

 AN AREA BY INTEGRATION(a) Determine the moment of inertia of a circular area with © respect to a diameter.
(b) Determine the centroidal polar moment of inertia of a circular area by direct integration

$$
d A=2\left(\frac{d}{2} \cos \theta\right) d y
$$

$$
I z=\int_{A} y^{2} d A=\int_{-d / 2}^{a \sqrt{2}} 2\left(\frac{d}{2} \cos \theta\right) y^{2} d y
$$

$$
y=\left(\frac{d}{2} \sin \theta\right) \Longrightarrow d y=\left(\frac{d}{2} \cos \theta\right) d \theta
$$

$$
y=\mp d / 2 \Rightarrow \theta=\mp \pi / 2
$$

EXAMPLS- DETERMINATION OF THE MOMENT OF INERTIA OF AN AREA BY INTEGRATION
$I z=\int_{-\pi / 2}^{\pi / 2}(d \cos \theta)\left(\frac{d}{2} \sin \theta\right)^{2}\left(\frac{d}{2} \cos \theta\right) d \theta$
$I z=\frac{d^{4}}{8} \int_{-\pi / 2}^{\pi / 2} \cos ^{2} \theta \sin ^{2} \theta d \theta$
$\Rightarrow I z=\frac{\pi d^{4}}{64}=I y$
$\Rightarrow I z=\frac{\pi r^{4}}{4}=\pi$

$$
J o=I z+I y=\frac{\pi d^{4}}{32}=\frac{\pi r^{4}}{2}
$$

