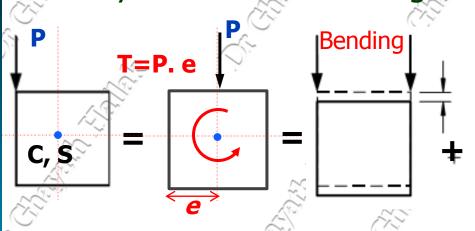
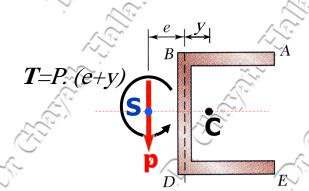
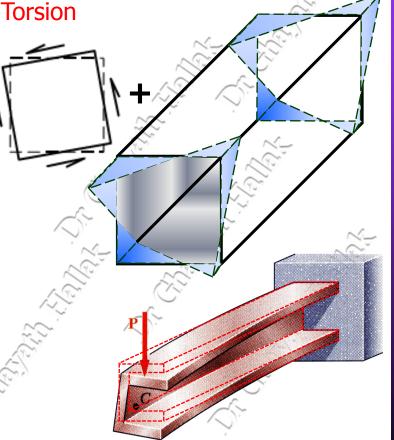
Beams subjected to loads which do not act through the point on the cross-section known as the shear centre normally suffer some twisting.

Warping due to Torsion





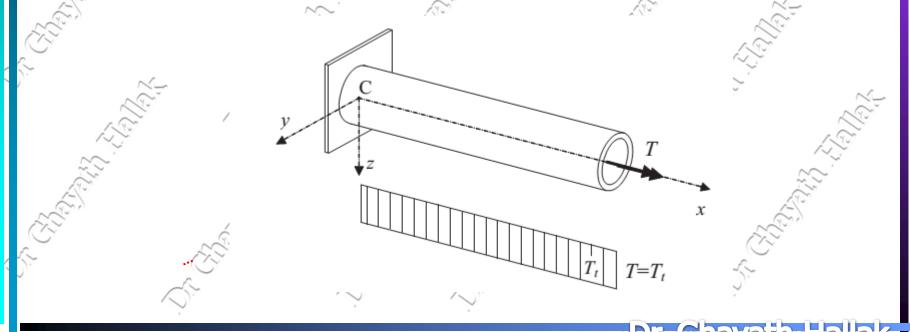


Generally, when a member is subjected to a torsional moment T, the cross sections rotate around the longitudinal axis of the member (axis that is defined by the shear centre of the cross sections) and warp, that is, they undergo differential longitudinal displacements, and plane sections no longer remain plane. If warping is free, which happens when the supports do not prevent it and the torsional moment is constant, the member is said to be under uniform torsion or St. Venant torsion. Conversely, if the torsional moment is variable or warping is restrained at any cross section (usually at the supports), the member is under non-uniform torsion

Uniform torsion induces distortion that is caused by the rotation of the cross sections around the longitudinal axis. As a consequence, shear stresses appear which balance the applied torsional moment T; under these circumstances, the resistance to the torsional moment T exclusively results from St Venant's torsion, T_t. Although longitudinal warping displacements may exist, they do not introduce stresses. In non-uniform torsion, besides the St. Venant shear stresses, longitudinal strains also exist (because warping varies along the member). These longitudinal strains generate self-equilibrating normal stresses at the cross sectional level that, depending on the level of restriction to warping, vary along the member. The existence of varying normal stresses implies (by equilibrium in the longitudinal direction) the existence of additional shear stresses that also resist to torsional moments, leading to: $T = T_t + T_t$

The applied torsional moment T is thus balanced by two terms, one due to the torsional rotation of the cross section (T_t) and the other caused by the restraint to warping, designated by warping torsion (T_w) .

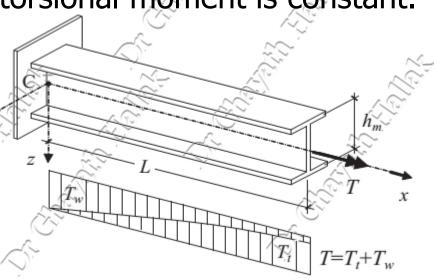
In cross sections of circular shape, because they exhibit rotational symmetry with respect to the shear centre S (that coincides with the centroid G), only **uniform torsion** exists.



In thin-walled closed cross sections (the most appropriate to resist torsion), $\underline{uniform\ torsion}$ is predominant. Therefore, in the analysis of thin-walled closed cross sections subjected to torsion, the warping torsion (T_w) is normally neglected.

In members with thin-walled open cross sections (such as I or H sections), so that only the uniform torsion component appears, it is necessary that the supports do not prevent warping and that the torsional moment is constant.

On the opposite, if the torsional moment is variable or warping is restrained at some cross sections (usual situation), the member is under <u>non-uniform torsion</u>.



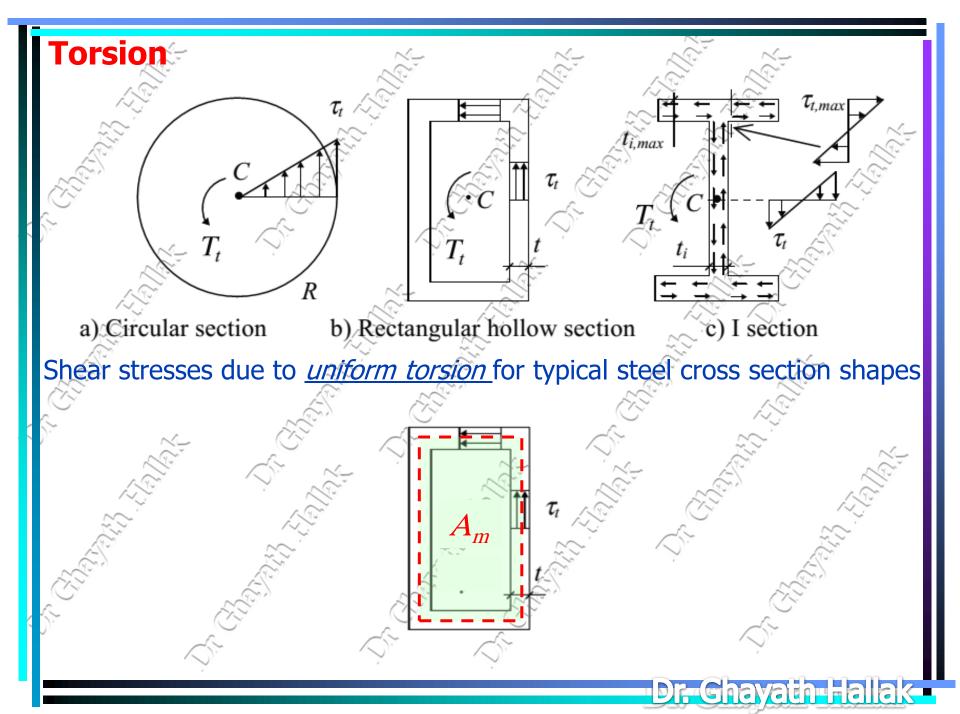
Shear stresses and torsion constant for typical steel cross section shapes

Section	Shear stress	Torsion constant <
Circular (solid or hollow)	$\tau = T_r$	$I_T = I_D$
		$I_T - I_p$
Thin-walled closed	T.	$I \approx 4A_m^2$
	$\tau_t = \frac{1}{2A_m t}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
Thin-walled open	T_{\star}	$\frac{1}{n} = \frac{1}{n} \frac{n}{h} + 3$
		$\frac{1}{3}\sum_{i=1}^{n_i}n_i t_i$

 I_p is the polar moment of inertia, $\pi R^4/2$ in the case of a circular solid section, R is the radius of the circular section A_m is the area defined by the middle line in a thin-walled closed cross section;

s is a coordinate that is defined along the outline of a thin-walled closed section

·Dr.-Ghayath-Hallak-



Torsion Warping constant for typical cross sections

Section	~			W
Circular (solid or	hollow)			o S
Thin-walled clos	ed E			0
I or H of equality of flanges	all ty tw	The state of the s	$\frac{t_f h}{\sqrt{2}}$	2 b ³
I or H of uneque		h_{m}	$t_f(z_1)$	$ \frac{b_1^3 b_2^3}{b_1^3 + b_2^3} $ $ \frac{b_1^3 + b_2^3}{b_1^3 + z_2 b_2^3} $ $ \frac{b_1^3 + z_2 b_2^3}{b_1^3 + z_2 b_2^2} $

Torsion Warping constant for typical cross sections Section Channel L, T or cross-shaped sections

- ✓- Open sections normally used as beams are inherently weak in resisting torsion.
- In circumstances where beams are required to withstand significant torsional loading, consideration should be given to the use of a torsionally more efficient shape such as a structural hollow section.
- ✓- The constant of uniform torsion I_t and the warping constant I_w for standard cross sections are usually supplied by steel producers, in tables of profiles

Unrestrained BeamsIntroduction

The design of a beam subject to bending and shear must be performed in two steps:

i) verification of the resistance of the cross section

cross sectional shape instability caused by shear forces, shear buckling & yielding

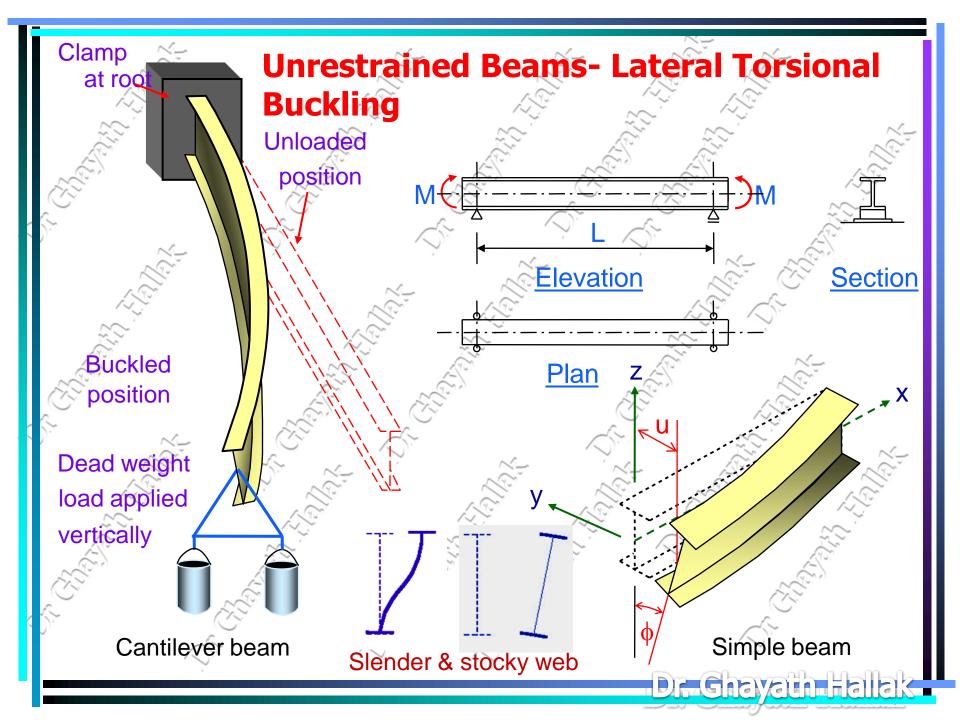
cross section class

local cross section instability

ii) Check on member stability

Beams without continuous lateral restraint and subjected to bending moment are prone to buckling about their major axis, this mode of buckling is called lateral torsional buckling (LTB).

Dr. Ghayath Hallak

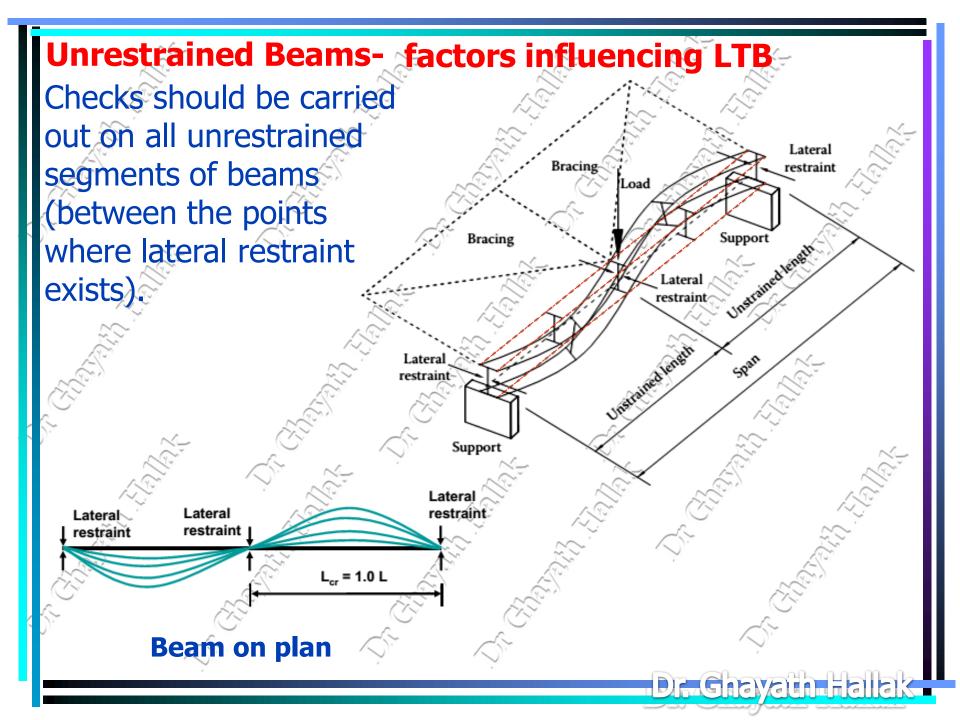


Unrestrained Beams

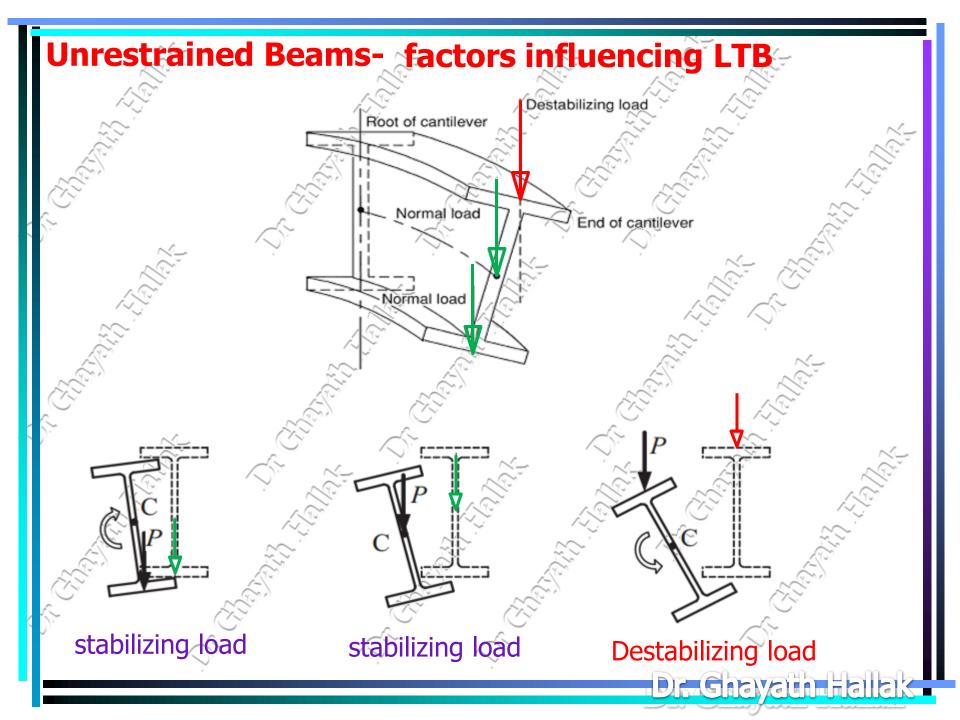
- Consider a member subject to bending about the strong axis of the cross section (the y axis). Lateral-torsional buckling is characterised by lateral deformation of the compressed part of the cross section (the compressed flange in the case of I or H sections). This part behaves like a compressed member(column), but one continuously restrained by the part of the section in tension, which initially does not have any tendency to move laterally.
- □- As seen in the following Figure, where this phenomenon is illustrated for a cantilever beam, the resulting deformation of the cross section includes both lateral bending and torsion. This is why this phenomenon is called lateral-torsional buckling.

Unrestrained Beams

- □- The load at which the beam buckles can be **much less** than that causing the **full moment** capacity to develop.
- D- Beams bent about their minor principal axis will respond by deforming in that plane i.e. there is no tendency when loaded in a weaker direction to buckle by deflecting in a stiffer direction.
- □- If the sort of deflections illustrated in the following Figure are prevented by the form of construction e.g. by attaching the beam's top flange to a laterally very stiff concrete slab, then buckling of this type cannot occur.
- □- Finally, if the beam's cross-section is torsionally very stiff, as is the case for all SHS, its resistance to lateral torsional buckling for all practical arrangements will be so great that it will not influence the design.



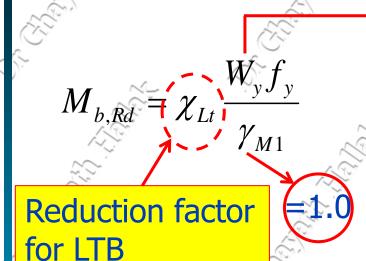
Unrestrained Beams- factors influencing LTB-Ioading (shape of the bending moment diagram) ☐- support conditions I length of the member between laterally braced cross sections ☐- lateral bending stiffness I, ☐- torsion stiffness I₊ - warping stiffness I_w The point of application of the loading .A gravity load applied below the shear centre C (that coincides with the centroid, in case of doubly symmetric I or H sections) has a stabilizing effect, whereas the same load applied above this point has a destabilizing effect



EN 1993-1-1 contains three methods for checking the lateral-torsional stability of a structural member:

- The primary method adopts the lateral buckling curves given in Clause 6.3.2.2 (general case) and Clause 6.3.2.3 (just for rolled sections and equivalent welded sections).
- 2. The second is a simplified assessment method for beams with restraints in buildings and is set out in Clause 6.3.2.4 of EN 1993-1-1.
- 3. The third is a general method for lateral and LTB of structural components, such as single members with monosymmetric cross sections, built-up, non-uniform or plane frames and subframes, given in Clause 6.3.4.

The design buckling resistance M_{b,Rd} of a laterally unrestrained beam (or segment of beam) should be taken as:



 $W_{pl,y}$ For class 1&2

 $W_{el,y}$ For class 3

W_{eff,y} For class 4

$$\frac{M_{Ed}}{M_{b,Rd}} \le 1.0$$

Reduction Factor χ_{Lt}

The primary method

i) General case: (Clause 6.3.2.2 of BS EN 1993-1-1)

$$\chi_{LT} = \frac{1}{\phi_{LT} + \sqrt{\phi_{LT}^2 - \overline{\lambda}_{LT}^2}} \le 1.0$$

Dr. Ghayath Hallak

Reduction Factor χ_{Lt}

i) General case: (Clause 6.3.2.2 of

BS EN 1993-1-1)

$$\overline{\lambda}_{LT} = \sqrt{\frac{W_{y} f_{y}}{M_{cr}}}$$

$$\phi_{LT} = 0.5 \left[1 + \alpha_{LT} \left(\overline{\lambda}_{LT} - 0.2 \right) + \overline{\lambda}_{LT}^{2} \right]$$

Imperfection factor

Plateau length

Table 6.4 of BS EN 1993-1-1 Buckling curves for LTB (General method)

Section	Limits	Buckling curve
I or H sections	b/h≤ 2	a
rolled	b/h > 2	b
I or H sections	b/h ≤ 2	С
welded	b/h > 2	d
Other sections		d

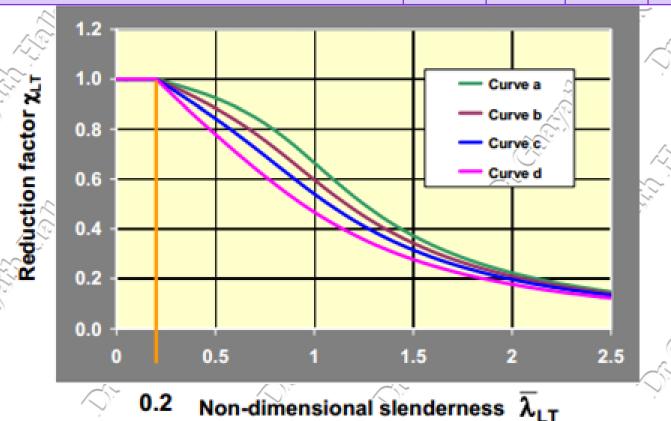
Dr. Ghayath: Hallak

LATERAL-TORSIONAL BUCKLING-Reduction Factor χ_L

i) General case: (Clause 6.3.2.2 of BS EN 1993-1-1)

Table 6.3 of BS EN 1993-1-1: imperfection factors for LTB curves

Buckling curve	a	b	С	d	
Imperfection factor $lpha_{\!\scriptscriptstyle LT}$	0,21	0,34	0,49	0,76	2



LATERAL-TORSIONAL BUCKLING- Reduction Factor χ_L

- i) General case: (Clause 6.3.2.2 of BS EN 1993-1-1)
- ** Lateral torsional buckling effects may be **ignored** and only cross sectional checks apply. IF:

$$1 - \overline{\lambda}_{LT} \leq \overline{\lambda}_{LT,0}$$
 where $\overline{\lambda}_{LT,0} = \lambda_{LT,0}/\lambda_1 =$

$$2 - Or \frac{M_{Ed}}{M_{cr}} \le \overline{\lambda}_{LT,0}^{2} = \left(0.4 \sqrt{\frac{\pi^{2} E \gamma_{M0}}{f_{y}}}\right) / 93.9\varepsilon = 0.4$$

3- CHS, SHS and [RHS(Table13-BS5950-2000)]

133	Cross-Section (From NA.2.17- NA to BS EN 1993-1-1:2005)	$\overline{\lambda}_{LT,0}$
2	For rolled sections and hot-finished and cold- formed hollow sections:	0.4
	For welded sections:	0.2

LATERAL-TORSIONAL BUCKLING-Reduction Factor χ_L

The primary method

ii) Rolled sections and equivalent welded sections. Clause 6.3.2.3 of BS EN 1993-1-1

$$\chi_{LT} = \frac{1}{\phi_{LT} + \sqrt{\phi_{LT}^2 - \beta \overline{\lambda}_{LT}^2}} but \begin{cases} \chi_{LT} \leq 1.0 \\ \chi_{LT} \leq \frac{1}{\overline{\lambda}_{LT}^2} \end{cases}$$

$$\phi_{LT} = 0.5 \left[1 + \alpha_{LT} \left(\overline{\lambda}_{LT} - \overline{\lambda}_{LT,0} \right) + \beta \overline{\lambda}_{LT}^{2} \right]$$

Cross-Sections (From NA.2.17- NA to BS EN 1993-1-1:2005)	$\overline{\lambda}_{LT,0}$	β
For rolled sections and hot-finished and cold- formed hollow sections:	0.4	0.75
For welded sections:	0.2	1.0

LATERAL-TORSIONAL BUCKLING- Reduction Factor χ_L

The primary method /

ii) Rolled sections and equivalent welded sections. Clause 6.3.2.3 of BS EN 1993-1-1

LTB curve for rolled and equivalent welded cases (From NA.2.17- NA to BS EN 1993-1-1:2005)

Section	Limits	Buckling curve
rolled doubly symmetric I and H	b/h≤ 2	b
sections and hot-finished hollow	2 <b 3.1<="" h="" td="" ≤=""><td>С</td>	С
sections	b/h > 3.1	d
Welded doubly symmetric sections and cold-formed hollow sections	b/h ≤ 2	С
	2 <b 3.1<="" h="" td="" ≤=""><td>d</td>	d
Angles (for moments in the major principal plane)		d
All other hot-rolled sections		d

LATERAL-TORSIONAL BUCKLING-Reduction Factor χ_L

The primary method

ii) Rolled sections and equivalent welded sections. Clause 6.3.2.3 of BS EN 1993-1-1

According to this method, the shape of the bending moment diagram, between braced sections, can be taken into account by considering a modified reduction factor $\chi_{LT. mod}$:

$$\chi_{LT,\text{mod}} = \frac{\chi_{LT}}{f} but \chi_{LT,\text{mod}} \le 1.0$$

$$f = 1 - 0.5 (1 - K_c) \left[1 - 2.0 (\overline{\lambda}_{LT} - 0.8)^2 \right] but f \le 1.0$$

K_c is a correction factor- Table 6.6 BS EN 1993-1-1

$$M_{b,Rd} = \chi_{Lt, \text{mod}} \frac{W_y f_y}{\gamma_{M1}}$$

LATERAL-TORSIONAL BUCKLING- Reduction Factor χ_L

Table 6.6 – k_c correction factors

$$k_{c} = 1/\sqrt{C_{1}} \Rightarrow C_{1} = 1/k_{c}^{2}$$

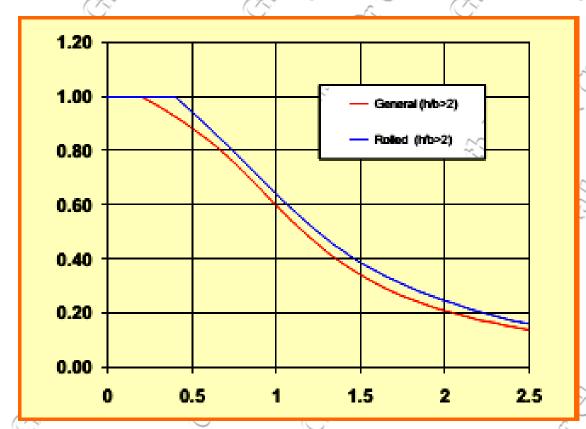
740	
Diagram of bending moments	k_c
$\Psi = +1$	1.0
-1≤Ψ≤1	1
	$1.33 - 0.33 \Psi$
M M_0 ΨM	
	0.94
	0.90
	0.91
M M_0 ΨM	
	0.86
	0.77
	0.82
Ψ - ratio between end moments, with -	$-1 \le \Psi \le 1$.

LATERAL-TORSIONAL BUCKLING-Reduction Factor χ_L

The primary method

Comparison between general curves and curves for rolled and equivalent welded sections (I-sections – h/b>2)

Reduction factor XLT



Rolled method more Economy

Non-dimensional slenderness $\overline{\lambda}_{LT}$

LATERAL-TORSIONAL BUCKLING-**Calculation of M_{cr} Elastic critical moment Method 1 - Method for doubly symmetric sections** Access Steel Document SN003. This method only applies to: ☐ - uniform straight members □- the cross-section is symmetric about the bending plane. $oldsymbol{\square}$ - The conditions of restraint at each end are at least : \Box *- restrained against lateral movement (lateral restraints are defined as arrangements that only prevent lateral deflection of the compression flange i.e. Lateral deflection of the tension flange and twisting are still possible.) **- restrained against rotation about the longitudinal axis (torsional restraints are defined as arrangements that prevent both lateral deflection and twisting e.g.

restraint to both the tension and compression flanges

Calculation of M_{cr} Elastic critical moment Method 1 -Method for doubly symmetric sections

Access Steel Document SN003

$$M_{cr} = C_1 \frac{\pi^2 E I_z}{(KL)^2} \left\{ \sqrt{\left(\frac{k}{k_w}\right)^2 \frac{I_w}{I_z} + \frac{(kL)^2 G I_T}{\pi^2 E I_z}} + (C_2 Z_g)^2 - C_2 Z_g \right\}$$

E is the Young modulus (E = 210000 N/mm2)

G is the shear modulus (G = 80770 N/mm2)

 I_z is the second moment of area about the weak axis

 I_{T} is the torsion constant

 $I_{\rm w}$ is the warping constant

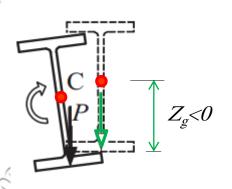
L is the beam length between points which have lateral restraint k and kw are effective length factors

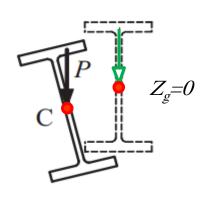
Zg is the distance between the point of load application and the shear centre.

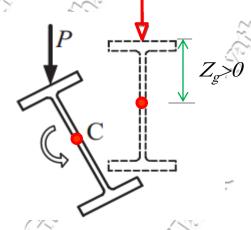
 C_1 and C_2 are coefficients depending on the loading and end restraint conditions

Calculation of M_{cr} Elastic critical moment

Method 1 - Method for doubly symmetric sections







stabilizing load

stabilizing load

Destabilizing load

In the common case of normal support conditions at the ends (fork supports), $k = k_w = 1.0$.

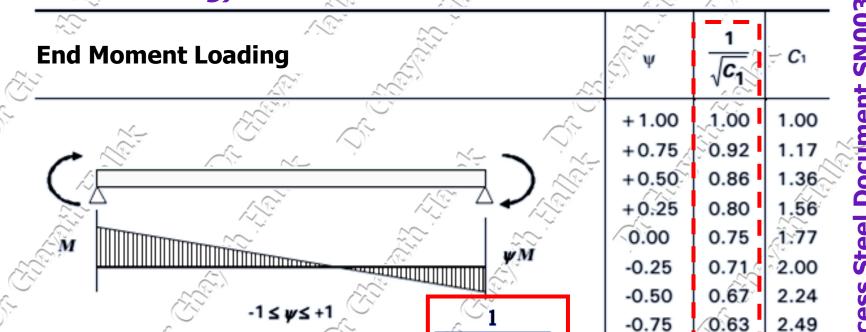
When the bending moment diagram is linear along a segment of a member delimited by lateral restraints, or when the transverse load is applied in the shear centre,

 $C_2 z_0 = 0.$

Calculation of M_{cr} Elastic critical moment Method 1 -Method for doubly symmetric sections

$$M_{cr} = C_1 \frac{\pi^2 E I_z}{L^2} \sqrt{\frac{I_w}{I_z} + \frac{L^2 G I_T}{\pi^2 E I_z}}$$

Values of $1/\sqrt{C_1}$ and C_1 for various moment conditions (load is not destabilising)



1.33−0.33Ψ

-1.00

2.76

Calculation of M_{cr} Elastic critical moment

Values of $1/\sqrt{C_1}$ and C_1 for various moment conditions (load is not destabilising)

Intermediate	e Transverse	e Loading	, (i),	1/√C ₁	C_1
				0.94	1.13
			2/3	0.62	2.60
				0.86	1.35
↓				0.77	A.69
5.	5	$k_c = 1/\sqrt{C_1} \Rightarrow 0$	$C_1 = 1/k_c^2$	4	

Dr. Ghayath Hallak

LATERAL-TORSIONAL BUCKLING-Calculation of M_{cr} Elastic critical moment

Member with end moments and transverse loading

Values of C_1 may be obtained from the curves given in Access Steel Document SN003. The moment distribution may be defined using two parameters :

is the ratio of end moments. By definition, M is the maximum end moment, and so : $-1 \le \psi \le 1$ ($\psi = 1$ for a uniform moment)

is the ratio of the moment due to transverse load to the maximum end moment M

Case a) (end moments with a uniformly distributed load) $\mu = qL^2/8M$

Case b) (end moments with a concentrated load at mid-span)

 $\mu = FL/4M$

 $\mu > 0$ if M and (q or F), bend the beam in the same direction. As shown above

Calculation of M_{cr} Elastic critical moment

Method 2

The value of M_{cr} may be determined using the software 'LTBeam' available from www.cticm.com

Method 3

As an alternative to calculating M_{cr} and hence $\overline{\chi}_{LT}$, the value of $\overline{\chi}_{TT}$ may be calculated directly from the expression:

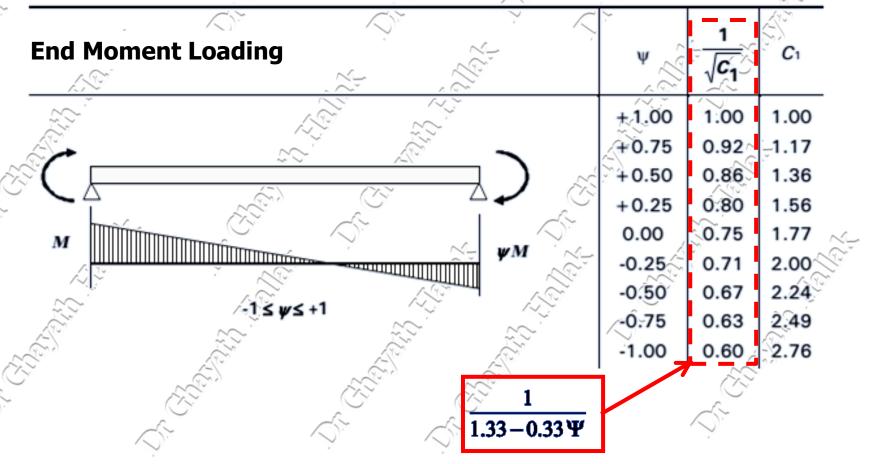
$$\overline{\lambda}_{LT} = \frac{1}{\sqrt{C_1}} UVD\overline{\lambda}_z \sqrt{\beta_w}$$

 C_1 is a factor that allows for the shape of the bending moment diagram. It may be conservatively taken as equal to 1.0. For cantilevers C_1 should be taken as 1.0 The factors in the following Table assume that the load is not destabilising. Where the load is destabilising C_1 should be taken as 1.0.

Dr. Ghayath: Hallak

LATERAL-TORSIONAL BUCKLING-Calculation of M_{cr} Elastic critical moment Method 3

Values of $1/\sqrt{C_1}$ and C_1 for various moment conditions



LATERAL-TORSIONAL BUCKLING-Calculation of M_{cr} Elastic critical moment Method 3

Values of $1/\sqrt{C_1}$ and C_1 for various moment conditions

Intermediate Transverse Lo	pading	1/√C ₁	C_1
		0.94	1.13
	2/3	0.62	2.60
		0.86	1.35
<u> </u>		0.77	<u>(1</u> .69
		~ (%)	:>

LATERAL-TORSIONAL BUCKLING

Calculation of M_{cr} Elastic critical moment Method 3

U is a parameter that depends on section geometry

$$U = \sqrt{\frac{W_{pl,y} g}{A}} \sqrt{\frac{I_z}{I_w}}$$

$$Where \quad g = \sqrt{1 - \frac{I_z}{I_y}}, or \ may \ conservatively = 1.0.$$

U = 0.9 conservative upper bound for UKB and UKC sections

V is a parameter related to slenderness:

$$V = \frac{1}{\left(\frac{k}{k_w}\right)^2 + \frac{\lambda_z^2}{\pi^2 E} \frac{A}{A} \frac{I_w}{I_z} + \left(C_2 Z_g\right)^2 \frac{I_z}{I_w}}$$

Dr. Ghayath: Hallak

For doubly-symmetric hot-rolled UKB and UKC sections, and for cases where the loading is not destabilizing:

$$V = \frac{1}{\sqrt{1 + \frac{1}{20} \left(\frac{\lambda_z}{h/t_f}\right)^2}}$$

For all sections symmetric about the major axis and not subjected to destabilizing loading, V=1.0 conservatively

LATERAL-TORSIONAL BUCKLING

Calculation of M_{cr} Elastic critical moment

Method 3

Values of slenderness parameter 1/

11 01	Pi _{cr} Mastic Critical moment AN									
λ_z										h/t _f
	5	10	15	20	25	30	35	40	45	50
30	0.77	0.91	0.96	0.97	0.98	0.99	0.99	0.99	0.99	1.00
50	0.64	0.82	0.90	0.93	0.96	0.97	0.98	0.98	0.99	0.99
75	0.53	0.72	0.82	0.88	0.91	0.93	0.95	0.96	0.97	0.97
100	0.47	0.64	0.75	0.82	0.86	0.90	0.92	0.93	0.95	0.96
125	0.42	0.58	0.69	0.76	0.82	0.86	0.88	0.91	0.92	0.93
150	0.38	0.53	0.64	0.72	0.77	0.82	0.85	0.88	0.90	0.91
175	0.36	0.50	0.60	0.67	0.73	0.78	0.82	0.85	0.87	0.89
200	0.33	0.47	0.56	0.64	0.70	0.75	0.79	0.82	0.84	0.86
225	0.31	0.44	0.53	0.61	0.67	0.72	0.76	0.79	0.82	0.84
250	0.30	0.42	0.51	0.58	0.64	0.69	0.73	0.76	0.79	0.82
275	0.28	0.40	0.49	0.56	0.61	0.66	0.70	0.74	0.77	0.79
300	0.27	0.38	0.47	0.53	0.59	0.64	0.68	0.72	0.75	0.77

 $\beta_{\rm w}$ is a parameter that allows for the classification of the cross-section; for Class 1 and 2 sections, $\beta_{\rm w}=1$ while for Class 3 sections $\beta_{\rm w}=W_{\rm el,y}/W_{\rm pl,y}$.

Dr. Ghayath Hallak

Method 3

 $\overline{\lambda}z$

is the minor axis non-dimensional slenderness of the member, given by $\overline{\lambda}z=\lambda_z/\lambda_1$, in which $\lambda_1=\pi\sqrt{E/f_y}=93.9\varepsilon$, $\lambda_z=kL/i_z$, where k is an effective length parameter

parameters for simply	(g)
ameters	beam
& D par	pported
	SL

Conditions of restraint at	Parameters		
	k	D	
Compression flange laterally restrained:	Both flanges fully restrained against rotation on plan	0.70	1.2
Nominal torsional restraint against	Compression flange fully restrained against rotation on plan	0.75	1.2
rotation about longitudinal axis	Both flanges partially restrained against rotation on plan	0.80	1.2
	Compression flange partially restrained against rotation on plan	0.85	1.2
7	Both flanges free to rotate on plan	1.00	1.2

Dr. Ghayath: Hallak

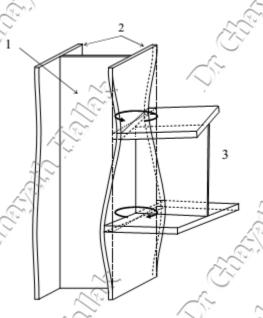
Method 3

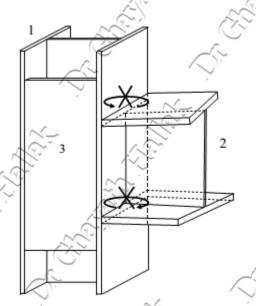
Effective length kL for Normal and destabilising Loading for simply supported beams.

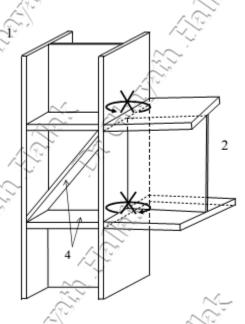
Con	kL Loading condition				
		Normal	Destabilizing		
Compression flange laterally unrestrained.	Partial torsional restraint against rotation about longitudinal axis provided by connection of bottom flange to supports.	1.0L + 2h	1.2 <i>L</i> + 2 <i>h</i>		
Both flanges free to rotate on plan.	Partial torsional restraint against rotation about longitudinal axis provided only by pressure of bottom flange onto supports.	1.2L + 2h	1.4 <i>L</i> + 2 <i>h</i>		

h = depth of beam.

Method 3







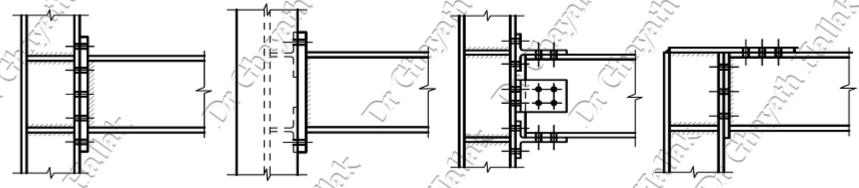
- 1 Column
- 2 Thin flanges
- 3 Cantilever beam (buckling)

Case of "free" warping conditions at support

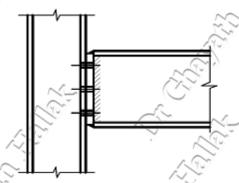
- 1 Column
- 2 Cantilever beam (buckling)
- 3 Stiffening plate (on both sides)
- 4 Stiffeners (on both sides)

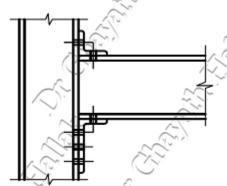
Case of "restrained" warping conditions at support

Method 3



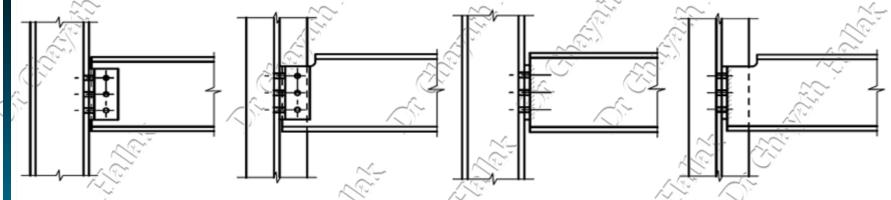
Both Flanges fully restrained against rotation on plan



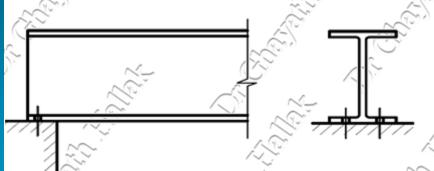


Both Flanges partially restrained against rotation on plan

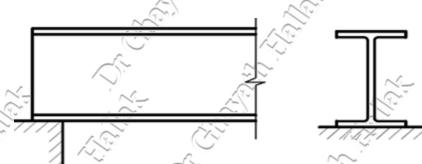
Method 3



Both Flanges free to rotate on plan

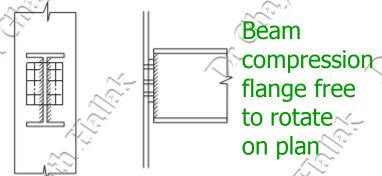


Partial torsional restraint against rotation about longitudinal axis provided by connection of bottom flange to supports

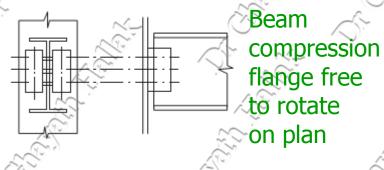


Partial torsional restraint against rotation about longitudinal axis provided by pressure of bottom flange onto supports

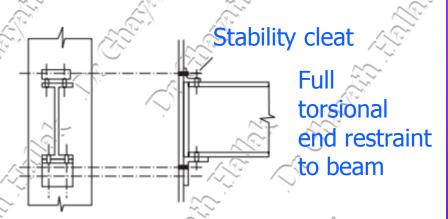
Method 3



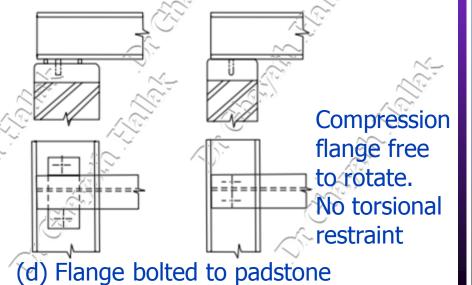
(a) Thin end plate to web only



(c) Web cleats bolted to beam



(b) Bottom flange cleat

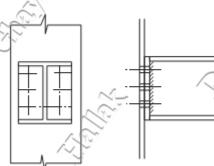


Dr. Ghayath Hallak

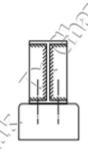
LATERAL-TORSIONAL BUCKLING

Calculation of M_{cr} Elastic critical moment

Method 3

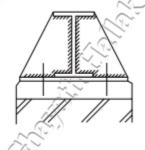


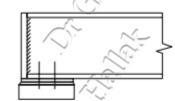
Full torsional end restraint to beam



Compression flange rotation reduced.
Torsional end restraint

(f) Flange bolted to padstone, web stiffener





Full torsional restraint No rotation of compression flange

(g) Full end stiffener

Effective length parameter k and destabilising D for cantilevers without intermediate restraint.

77	<u>iiteriiieulate r</u>	cstraint.	~		~~~	7
7	Restraint co	onditions	7.0	k	1	D
	At support	At tip			, ·	× × ×
	a) Continuous, with lateral restraint to top flange	Free Lateral restraint to top flange	3,0 2,7		2,5 2,8	
67		Torsional restraint Lateral and torsional restraint	2,4 2,1		1,9	
15.			7			Ş-
	b) Continuous, with partial torsional restraint	1) Free	2,0	200	2,5	,
	torsional restraint	2) Lateral restraint to top flange	1,8	200	2,8 1,9	2
		Torsional restraint Lateral and torsional	1,6	2500	1,7	
54 B3		restraint	1,4		1983 S	
	c) Continuous, with lateral and torsional restraint	1) Free	1,0		2,5	~~
	and torsional restraint	Lateral restraint to top flange Torsional restraint	0,9		2,8 1,9	
		4) Lateral and torsional restraint	0,7		1,7	

Dr. Ghayath Hallak

LATERAL-TORSIONAL BUCKLING

Effective length parameter k and destabilising D for cantilevers without intermediate restraint.

N.S.	AD.	(A)	7	
Restraint co	nditions	k	D	
At support	At tip			
d) Restrained laterally, torsionally and against rotation on plan	1) Free 2) Lateral restraint to top flange 3) Torsional restraint 4) Lateral and torsional restraint	0,8 0,7 0,6 0,5	1,75 2,0 1,0 1,0	
1) Free	2) Lateral restraint to	int conditions 3) Torsional restraint	4) Lateral and torsional	
(not braced on plan)	(braced on plan in at least one bay)	(not braced on plan)	(braced on plan in at least one bay)	

LATERAL-TORSIONAL BUCKLING

Method 3

Calculation of M_{cr} Elastic critical moment

D is a destabilizing parameter to allow for destabilizing loads (i.e. Loads applied above the shear centre of the beam, where the load can move with the beam as it buckles), given by:

For non-destabilizing loads, D = 1.0, $1 - V^2 C_2 Z_g \sqrt{\frac{I_z}{I_w}}$

For destabilizing loads, D = 1.2 for simply supported beams. As shown in the previous Table.

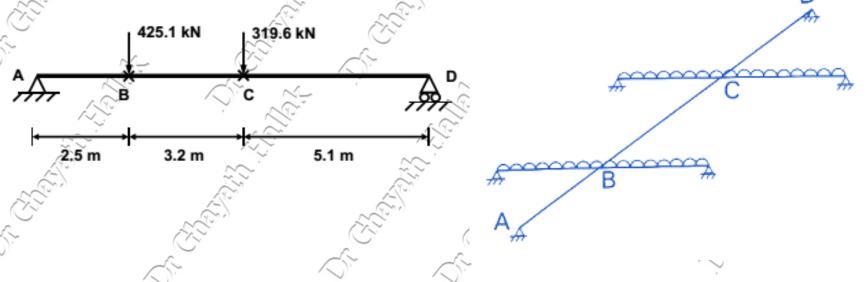
In practice, destabilizing loads are only considered in cases for which the applied loading offers no resistance to lateral movement, e.g. a free standing brick wall on a beam. Normal loads from floors do not constitute a destabilizing load.

Design procedure for LTB

- 1. Determine BMD and SFD from design loads
- 2. Select section and determine geometry
- 3. Classify cross-section (Class 1, 2, 3 or 4)
- Determine effective (buckling) length L_{cr} depends on boundary conditions and load level
- 5. Calculate M_{cr} and W_vf_v
- 6. Non-dimensional slenderness
- 7. Determine imperfection factor α_{LT}
- 8. Calculate buckling reduction factor χ_{LT}
- 9. Design buckling resistance $M_{b,Rd} = \chi_{LT} 10$
- 10. Check for each unrestrained portion

$$\frac{\mathsf{M}_{\mathsf{Ed}}}{\mathsf{M}_{\mathsf{b},\mathsf{Rd}}} \leq 1.0$$

A simply-supported primary beam is required to span 10.8m and to support two secondary beams as shown below. The secondary beams are connected through fin plates to the web of the primary beam, and full lateral restraint may be assumed at these points. Select a suitable member for the primary beam assuming grade \$ 275 steel.



Lateral torsional buckling And checks to be carried out on segments BC and CD.

By inspection, segment AB is not critical.

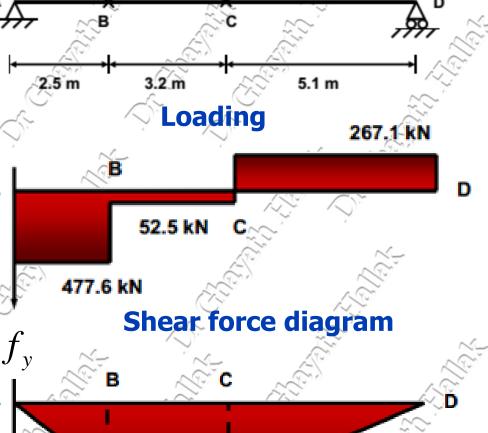
$$M_{c,Rd} = W_{y,pl} f_y / \gamma_{M0}$$

$$W_{y,pl} = M_{c,Rd} \gamma_{M0}/f_y$$
 SF

$$W_{y,pl,trial} = M_{c,Rd} \gamma_{M0} / 0.8 f_y$$

$$W_{y,pl,trial} = \frac{1362 \times 10^3}{(0.8 \times 265)}$$

$$W_{v,pl,trial} = 6424.5E^3 mm^3$$



Bending moment diagram

1362 kNm

1194 kNm

Try 762×267×173 UB in grade S 275 steel.

$$h = 762.2 \text{ mm}$$
 , $U = 0.865$

$$b = 266.7 \text{ mm}$$
, $i_z = 55.8 \text{mm}$

$$t_{\rm w} = 14.3 \; {\rm mm}$$

$$t_{\rm f} = 21.6 \, \rm mm$$

$$r = 16.5 \, mm$$

$$A = 22000 \text{ mm}^2$$

$$W_{y,pl} = 6200 \times 10^3 \text{ mm}^3$$

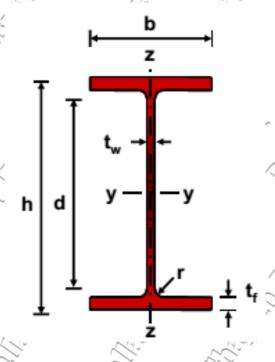
$$I_7 = 68.50 \times 10^6 \text{ mm}^4$$

$$I_T = 2670 \times 10^3 \text{ mm}^4$$

$$I_{\rm w} = 9390 \times 10^9 \, \rm mm^6$$

Steel Properties

 $40 \text{mm} > t_f = 21.6 \text{ mm} > 16 \text{mm}$



For S275 (to EN 10025-2) $f_v = 265 \text{N/mm}^2$

Steel Properties

From clause 3.2.6: $E = 210000 \text{N/mm}^2$ and $G \approx 81000 \text{N/mm}^2$

Cross-section classification (clause 5.5.2):

$$\varepsilon = \sqrt{235/f_y} = \sqrt{235/265} = 0.94$$

Outstand flanges (Table 5.2, sheet 2)

$$c_f = (b - t_w - 2r) / 2 = 109.7 \text{ mm}$$

$$c_f / t_f = 109.7 / 21.6 = 5.08$$

Limit for Class 1 flange $= 9\epsilon = 8.48 > 5.08$

∴ Flange is Class 1

Web – internal part in bending (Table 5.2, sheet 1)

$$c_w = h - 2t_f - 2r = 686.0 \text{ mm}$$

$$c_w / t_w = 686.0 / 14.3 = 48.0$$

Limit for Class 1 web = $72 \epsilon = 67.8 > 48.0$

Cross-section classification (clause 5.5.2):

Web is Class 1

Overall cross-section classification is therefore Class 1.

Bending resistance of cross-section (clause 6.2.5):

 $M_{c.y,Rd} = M_{pl, Rd} = W_{pl,y} f_y / \gamma_{MO}$ for Class 1 and 2 sections

 $M_{c.v,Rd} = 6200 \times 10^3 \times 265 / 1.0 = 1643 \times 10^6 \text{ N.mm}$

=1643 kN.m>1362 kN.m

: Cross-section resistance in bending is OK.

<u>Lateral torsional buckling check (clause 6.3.2.2) – Segment BC:</u>

$$M_{Ed} = 1362kN.m$$

$$M_{b,Rd} = \chi_{Lt} \frac{W_{y} f_{y}}{\gamma_{M1}}$$
, $W_{y} = W_{pl,y}$ For class 1&2

Determine M_{cr} for segment BC ($L_{cr} = 3200 \text{ mm}$)

$$M_{cr} = C_1 \frac{\pi^2 E I_z}{L^2} \sqrt{\frac{I_w}{I_z} + \frac{L^2 G I_T}{\pi^2 E I_z}}$$

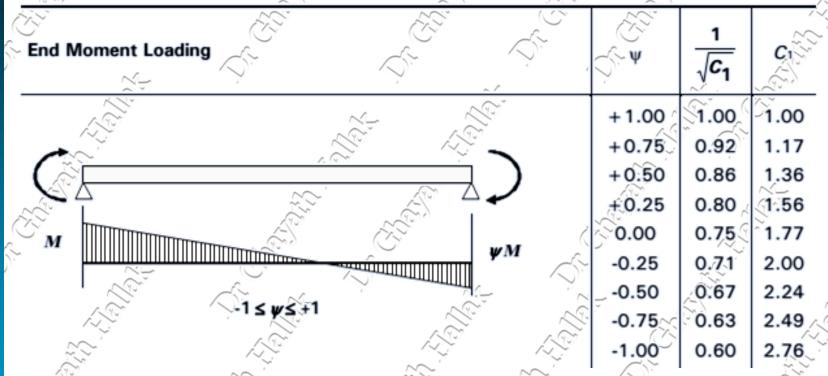
For end moment loading C1 may be approximated from:

$$C1 = 1.88 - 1.40\psi + 0.52\psi^2$$
 but $C1 \le 2.70$

$$\psi$$
 is the ratio of the end moments =1194/1362=0.88 \Rightarrow

$$C1 = 1.05$$

<u>Lateral torsional buckling check (clause 6.3.2.2) – Segment BC:</u>



According to the above table (by interpolation for ψ =0.88) C1= 1.08

<u>Lateral torsional buckling check (clause 6.3.2.2) – Segment BC:</u>

According to the above table (by interpolation for ψ =0.88) C_1 = 1.08

$$M_{cr} = 1.05 \times \frac{\pi^2 \times 210000 \times 68.5 \times 10^6}{3200^2} \sqrt{\frac{9390 \times 10^9}{68.5 \times 10^6} + \frac{3200^2 \times 81000 \times 2670 \times 10^3}{\pi^2 \times 210000 \times 68.5 \times 10^6}}$$

$$M_{cr} = 5699 \times 10^6 \, N.mm = 5699kN.m$$

Non-dimensional lateral torsional slenderness for segment BC:

$$\overline{\lambda}_{LT} = \sqrt{\frac{W_y f_y}{M_{cr}}} = \sqrt{\frac{6200 \times 10^3 \times 265}{5699 \times 10^6}} = 0.54$$

Select buckling curve and imperfection factor α_{LT} :

From Table 6.4: h/b = 762.2/266.7 = 2.85

For a rolled I-section with h/b > 2, use buckling curve b

Lateral torsional buckling check (clause 6.3.2.2) -**Segment BC:**

From Table 6.3 of EN 1993-1-1: For buckling curve b, $\alpha_{LT}=0.34$ Calculate reduction factor for lateral torsional buckling, χ_{IT} -Segment BC:

$$\chi_{LT} = \frac{1}{\phi_{LT} + \sqrt{\phi_{LT}^2 - \overline{\lambda}_{LT}^2}} \le 1.0$$

$$\phi_{LT} + \sqrt{\phi_{LT}^2 - \overline{\lambda}_{LT}^2}$$

$$\phi_{LT} = 0.5 \left[1 + \alpha_{LT} (\overline{\lambda}_{LT} - 0.2) + \overline{\lambda}_{LT}^2 \right] = 0.5 \times \left[1 + 0.34 \times (0.54 - 0.2) + 0.54^2 \right]$$

$$\phi_{LT} = 0.70$$

$$\phi_{LT} = 0.70$$

$$\therefore \chi_{LT} = \frac{1}{0.7 + \sqrt{0.7^2 - 0.54^2}} = 0.87 \langle 1.0 \rangle$$

<u>Lateral torsional buckling check (clause 6.3.2.2) – Segment BC:</u>

Lateral torsional buckling resistance M_{b,Rd} - Segment BC:

$$M_{b,Rd} = \chi_{Lt} \frac{W_y f_y}{\gamma_{M1}} = 0.87 \times 6200 \times 10^3 \times \frac{265}{1.0} = 1429 \times 10^6 N.mm$$

$$M_{b,Rd} = 1429kN.m$$

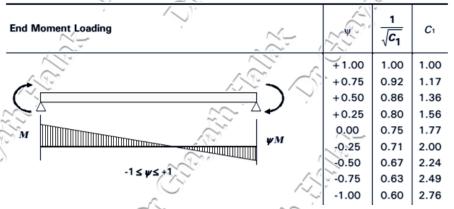
$$\frac{M_{Ed}}{M_{h,Rd}} = \frac{1362}{1429} = 0.95 \le 1.0$$
 : Segment BC is OK.

<u>Lateral torsional buckling check (clause 6.3.2.2) – Segment BC: using Method 3</u>

Lateral torsional buckling resistance M_{b,Rd} – Segment BC:

$$\overline{\lambda}_{LT} = \frac{1}{\sqrt{C_1}} UVD\overline{\lambda}_z \sqrt{\beta_w}$$

 ψ is the ratio of the end moments = 1194/1362=0.88



$$\Rightarrow \frac{1}{\sqrt{C_1}} = 0.93$$
, $U = 0.865$, $i_z = 55.8$ mm, $D = 1.0$ (Normal), $\beta_w = 1$

$$\lambda_z = kL/i_z = 1 \times 3200/55.8 = 57.35$$

$$\overline{\lambda}_z = \lambda_z / \lambda_1 = 57.35 / (93.9 \times 0.92) = 0.66$$

<u>Lateral torsional buckling check (clause 6.3.2.2) – Segment BC: using Method 3</u>

$$V = \frac{1}{\sqrt{1 + \frac{1}{20} \left(\frac{\lambda_z}{h/t_f}\right)^2}} = \frac{1}{\sqrt{1 + \frac{1}{20} \left(\frac{57.35}{762.2/21.6}\right)^2}} = 0.97$$

$$\overline{\lambda}_{LT} = 0.93 \times 0.865 \times 0.97 \times 1.0 \times 0.66 \times 1.0 = 0.52$$

Select buckling curve and imperfection factor α_{LT} : From Table 6.4: h/b = 762.2/266.7 = 2.85 For a rolled I-section with h/b > 2, use buckling curve b From Table 6.3 of EN 1993-1-1: For buckling curve b, $\alpha_{LT} = 0.34$

Calculate reduction factor for lateral torsional buckling, χ_{LT} – Segment BC:

Dr. Ghayath Hallak

<u>Lateral torsional buckling check (clause 6.3.2.2) – Segment BC: using Method 3</u>

$$\chi_{LT} = \frac{1}{\phi_{LT} + \sqrt{\phi_{LT}^2 - \overline{\lambda}_{LT}^2}} \le 1.0$$

$$\phi_{LT} + \sqrt{\phi_{LT}^2 - \overline{\lambda}_{LT}^2}$$

$$\phi_{LT} = 0.5 \left[1 + \alpha_{LT} (\overline{\lambda}_{LT} - 0.2) + \overline{\lambda}_{LT}^2 \right] = 0.5 \times \left[1 + 0.34 \times (0.52 - 0.2) + 0.52^2 \right]$$

$$\phi_{LT} = 0.69$$

$$\therefore \chi_{LT} = \frac{1}{0.69 + \sqrt{0.69^2 - 0.52^2}} = 0.87 \langle 1.0 \rangle$$

$$M_{b,Rd} = \chi_{Lt} \frac{W_y f_y}{\gamma_{M1}} = 0.87 \times 6200 \times 10^3 \times \frac{265}{1.0} = 1429 \times 10^6 N.mm$$

<u>Lateral torsional buckling check (clause 6.3.2.2) – Segment BC: using Method 3</u>

$$\frac{M_{Ed}}{M_{bRd}} = \frac{1362}{1429} = 0.95 \le 1.0$$
 : Segment BC is OK.

Using the second method: Rolled sections and equivalent welded sections. Clause 6.3.2.3 of BS EN 1993-1-1

From NA.2.17- NA to BS EN 1993-1-1:2005:

$$3.1>h/b = 762.2/266.7 = 2.85>2$$
, use buckling curve C

From Table 6.3 of EN 1993-1-1: For buckling curve C,

$$\alpha_{LT} = 0.49$$

$$\phi_{LT} = 0.5 \left[1 + \alpha_{LT} \left(\overline{\lambda}_{LT} - \overline{\lambda}_{LT,0} \right) + \beta \overline{\lambda}_{LT}^2 \right]$$

$$\phi_{LT} = 0.5 \times [1 + 0.49(0.52 - 0.4) + 0.75 \times 0.52^{2}] = 0.63$$

<u>Lateral torsional buckling check (clause 6.3.2.2) – Segment BC: using Method 3</u>

$$\chi_{LT} = \frac{1}{\phi_{LT} + \sqrt{\phi_{LT}^2 - \beta \overline{\lambda}_{LT}^2}} = \frac{1}{0.63 + \sqrt{0.63^2 - 0.75 \times 0.52^2}}$$

$$\chi_{LT} = 0.934 but \begin{cases} \chi_{LT} \le 1.0 \ OK \\ \chi_{LT} \le \frac{1}{\overline{\lambda}_{LT}^2} = 3.7 \ OK \end{cases}$$

$$f = 1 = 0.5 (1 - K_c) [1 - 2.0(\overline{\lambda}_{LT} - 0.8)^2]$$

$$f = 1 - 0.5 \times (1 - 0.93)[1 - 2(0.52 - 0.8)] = 0.95 \le 1.0$$

$$\chi_{LT, \text{mod}} = \frac{\chi_{LT}}{f} = \frac{0.934}{0.95} = 0.983 \le 1.0$$

<u>Lateral torsional buckling check (clause 6.3.2.2) – Segment BC: using Method 3</u>

$$M_{b,Rd} = \chi_{Lt,mod} \frac{W_y f_y}{\gamma_{M1}} = 0.983 \times 6200 \times 10^3 \times \frac{265}{1.0} = 1615 \text{ kN.m}$$

$$\frac{M_{Ed}}{M_{b,Rd}} = \frac{1362}{1615} = 0.84 \le 1.0$$
 : Segment BC is OK.

<u>Lateral torsional buckling check (clause 6.3.2.2) – Segment CD:</u>

$$M_{Fd} = 1362kN.m$$

$$M_{b,Rd} = \chi_{Lt} \frac{W_{y} f_{y}}{\gamma_{M1}}$$
, $W_{y} = W_{pl,y}$ For class 1&2

Determine M_{cr} for segment CD ($L_{cr} = 5100 \text{ mm}$)

$$M_{cr} = C_1 \frac{\pi^2 E I_z}{L^2} \sqrt{\frac{I_w}{I_z} + \frac{L^2 G I_T}{\pi^2 E I_z}}$$

For end moment loading C1 may be approximated from:

$$C1 = 1.88 - 1.40\psi + 0.52\psi^2$$
 but $C1 \le 2.70$

$$\psi$$
 is the ratio of the end moments =1194/1362=0.88 \Rightarrow

$$C1 = 1.05$$

<u>Lateral torsional buckling check (clause 6.3.2.2) – Segment CD:</u>

Determine ψ from Table: ψ is the ratio of the end moments =0/1362=0 \Rightarrow C1= 1.88

$$M_{cr} = 1.88 \times \frac{\pi^2 \times 210000 \times 68.5 \times 10^6}{5100^2} \sqrt{\frac{9390 \times 10^9}{68.5 \times 10^6} + \frac{5100^2 \times 81000 \times 2670 \times 10^3}{\pi^2 \times 210000 \times 68.5 \times 10^6}}$$

$$M_{cr} = 4311 \times 10^6 N.mm = 4311kN.m$$

Non-dimensional lateral torsional slenderness for segment CD:

$$\overline{\lambda}_{LT} = \sqrt{\frac{W_y f_y}{M_{cr}}} = \sqrt{\frac{6200 \times 10^3 \times 265}{4311 \times 10^6}} = 0.62$$

The buckling curve and imperfection factor α_{LT} are as for segment BC.

Dr. Ghayath: Hallak

Lateral torsional buckling check (clause 6.3.2.2) -**Segment CD:**

Calculate reduction factor for lateral torsional buckling, χ_{LT} Segment CD:

$$\chi_{LT} = \frac{1}{\phi_{LT} + \sqrt{\phi_{LT}^2 - \overline{\lambda}_{LT}^2}} \le 1.0$$

$$\phi_{LT} + \sqrt{\phi_{LT}^2 - \overline{\lambda}_{LT}^2}$$

$$\phi_{LT} = 0.5 \left[1 + \alpha_{LT} (\overline{\lambda}_{LT} - 0.2) + \overline{\lambda}_{LT}^2 \right] = 0.5 \times \left[1 + 0.62 \times (0.62 - 0.2) + 0.62^2 \right]$$

$$\phi_{LT} = 0.76$$

$$\phi_{LT} = 0.76$$

$$\therefore \chi_{LT} = \frac{1}{0.76 + \sqrt{0.76^2 - 0.62^2}} = 0.83\langle 1.0 \rangle$$

<u>Lateral torsional buckling check (clause 6.3.2.2) – Segment CD:</u>

Lateral torsional buckling resistance M_{b,Rd} - Segment CD:

$$M_{b,Rd} = \chi_{Lt} \frac{W_y f_y}{\gamma_{M1}} = 0.83 \times 6200 \times 10^3 \times \frac{265}{1.0} = 1363.7 \times 10^6 N.mm$$

$$M_{b,Rd} = 1363.7kN.m$$

$$\frac{M_{Ed}}{M_{b.Rd}} = \frac{1362}{1363.7} = 1.0$$

Segment CD is critical and marginally fails LTB check.