
Torsion 
Beams subjected to loads which do not act through the 
point on the cross-section known as the shear centre 
normally suffer some twisting. 
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Torsion 

Generally, when a member is subjected to a torsional 
moment T, the cross sections rotate around the longitudinal 
axis of the member (axis that is defined by the shear centre 
of the cross sections) and warp, that is, they undergo 
differential longitudinal displacements, and plane sections no 
longer remain plane. If warping is free, which happens 
when the supports do not prevent it and the torsional 
moment is constant, the member is said to be under 
uniform torsion or St. Venant torsion. Conversely, if the 
torsional moment is variable or warping is restrained 
at any cross section (usually at the supports), the member is 
under non-uniform torsion 



Torsion 
Uniform torsion induces distortion that is caused by the 
rotation of the cross sections around the longitudinal axis. As 
a consequence, shear stresses appear which balance the 
applied torsional moment T; under these circumstances, the 
resistance to the torsional moment T exclusively results 
from St Venant’s torsion, Tt. Although longitudinal warping 
displacements may exist, they do not introduce stresses. 
In non-uniform torsion, besides the St. Venant shear 
stresses, longitudinal strains also exist (because warping 
varies along the member). These longitudinal strains 
generate self-equilibrating normal stresses at the cross 
sectional level that, depending on the level of restriction to 
warping, vary along the member. The existence of varying 
normal stresses implies (by equilibrium in the longitudinal 
direction) the existence of additional shear stresses that also 
resist to torsional moments, leading to: T = Tt + Tw.          



Torsion 

The applied torsional moment T is thus balanced by two 
terms, one due to the torsional rotation of the cross section 
(Tt) and the other caused by the restraint to warping, 
designated by warping torsion (Tw). 
In cross sections of circular shape, because they exhibit 
rotational symmetry with respect to the shear centre S (that 
coincides with the centroid G), only uniform torsion exists. 
 
 
 
 
 
 
 
 



Torsion 
In thin-walled closed cross sections (the most 
appropriate to resist torsion), uniform torsion is predominant. 
Therefore, in the analysis of thin-walled closed cross sections 
subjected to torsion, the warping torsion (Tw) is normally 
neglected. 
In members with thin-walled open cross sections 
(such as I or H sections), so that only the uniform torsion 
component appears, it is necessary that the supports do not 
prevent warping and that the torsional moment is constant.  

On the opposite, if the 
torsional moment is variable 
or warping is restrained at 
some cross sections (usual 
situation), the member is 
under non-uniform torsion. 



Torsion 

Ip      is the polar moment of inertia, π R4/2 in the case of a 

circular solid section, R is the radius of the circular section 
Am  is the area defined by the middle line in a thin-walled 

closed cross section; 
s   is a coordinate that is defined along the outline of a 
thin-walled closed section 

Shear stresses and torsion constant for typical steel cross section shapes 



Torsion 

Shear stresses due to uniform torsion for typical steel cross section shapes 

Am 



Torsion 
Warping constant for typical cross sections 
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Torsion 

Warping constant for typical cross sections 
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Torsion 

- The constant of uniform torsion It and the warping 
 constant Iw for standard cross sections are usually 
 supplied by steel producers, in tables of profiles 

- Open sections normally used as beams are inherently 
 weak in resisting torsion.  
- In circumstances where beams are required to withstand 
 significant torsional loading, consideration should be 
 given to the use of a torsionally more efficient shape 
 such as a structural hollow section. 



Unrestrained Beams 
 Introduction 

The design of a beam subject to bending and shear must 
be performed in two steps: 

i) verification of the resistance of the cross section 

cross sectional shape 

cross section class local cross section instability 

instability caused by 
shear forces, shear 
buckling & yielding 

ii) Check on member stability 

Beams without continuous lateral restraint and 
subjected to bending moment are prone to buckling 
about their major axis, this mode of buckling is called 
lateral torsional buckling (LTB). 



Unrestrained Beams- Lateral Torsional 
Buckling 
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Unrestrained Beams 

- Consider a member subject to bending about the 
strong axis of the cross section (the y axis). Lateral-
torsional buckling is characterised by lateral deformation of 
the compressed part of the cross section (the compressed 
flange in the case of I or H sections). This part behaves 
like a compressed member(column), but one continuously 
restrained by the part of the section in tension, which 
initially does not have any tendency to move laterally. 
- As seen in the following Figure, where this 
phenomenon is illustrated for a cantilever beam, the 
resulting deformation of the cross section includes both 
lateral bending and torsion. This is why this phenomenon 
is called lateral-torsional buckling.   



Unrestrained Beams 

- The load at which the beam buckles can be much less 
than that causing the full moment capacity to develop. 
-  Beams bent about their minor principal axis will 
respond by deforming in that plane i.e. there is no 
tendency when loaded in a weaker direction to buckle by 
deflecting in a stiffer direction. 
- If the sort of deflections illustrated in the following 
Figure are prevented by the form of construction e.g. by 
attaching the beam’s top flange to a laterally very stiff 
concrete slab, then buckling of this type cannot occur. 
-  Finally, if the beam’s cross-section is torsionally very 
stiff, as is the case for all SHS, its resistance to lateral 
torsional buckling for all practical arrangements will be so 
great that it will not influence the design. 



Unrestrained Beams- 

Beam on plan 

Checks should be carried 
out on all unrestrained 
segments of beams 
(between the points 
where lateral restraint 
exists). 

factors influencing LTB 



Unrestrained Beams- factors influencing LTB 

- loading (shape of the bending moment diagram) 
- support conditions 
- length of the member between laterally braced cross 
 sections 
- lateral bending stiffness Iz 

- torsion stiffness It 

- warping stiffness Iw 

- the point of application of the loading .A gravity 
 load applied below the shear centre C (that coincides 
 with the centroid, in case of doubly symmetric I or H 
 sections) has a stabilizing effect, whereas the same 
 load applied above this point has a destabilizing 
 effect 



Unrestrained Beams- factors influencing LTB 

Destabilizing load stabilizing load stabilizing load 



EN 1993-1-1 contains three methods for checking the 
lateral-torsional stability of a structural member: 
1. The primary method adopts the lateral buckling curves 
 given in Clause 6.3.2.2 (general case) and Clause 
 6.3.2.3 (just for rolled sections and equivalent 
 welded sections). 
2. The second is a simplified assessment method for beams 
 with restraints in buildings and is set out in Clause 
 6.3.2.4 of EN 1993-1-1. 
3. The third is a general method for lateral and LTB of 
 structural components, such as single members with 
 monosymmetric cross sections, built-up, non-uniform 
 or plane frames and subframes, given in Clause 
 6.3.4. 

LATERAL-TORSIONAL BUCKLING 



The design buckling resistance Mb,Rd of a laterally unrestrained 
beam (or segment of beam) should be taken as: 

LATERAL-TORSIONAL BUCKLING 
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LATERAL-TORSIONAL BUCKLING 
Reduction Factor Lt 

i) General case: (Clause 6.3.2.2 of 
  BS EN 1993-1-1)  

Imperfection factor 

cr

yy
LT

M

fW


Plateau length 

Table 6.4 of BS EN 1993-1-1 Buckling curves for LTB (General method) 

Section  Limits Buckling curve 

I or H sections 
rolled 

b/h≤ 2 a 

b/h > 2  b 

I or H sections 
welded 

b/h ≤ 2  c 

b/h > 2  d 

Other sections  --- d 
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LATERAL-TORSIONAL BUCKLING- Reduction Factor Lt 

i) General case: (Clause 6.3.2.2 of BS EN 1993-1-1)  

Buckling curve  a b c d 

Imperfection factor  αLT 
0,21  0,34  0,49 0,76 

Table 6.3 of BS EN 1993-1-1: imperfection factors for LTB curves 



LATERAL-TORSIONAL BUCKLING- Reduction Factor Lt 

i) General case: (Clause 6.3.2.2 of BS EN 1993-1-1)  

** - Lateral torsional buckling effects may be ignored and 
 only cross sectional checks apply. IF: 

Cross-Section 
(From NA.2.17- NA to BS EN 1993-1-1:2005) 

For rolled sections and hot-finished and cold-
formed hollow sections: 

0.4  

For welded sections: 0.2 
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LATERAL-TORSIONAL BUCKLING- Reduction Factor Lt 

ii) Rolled sections and equivalent welded sections. 
  Clause 6.3.2.3 of BS EN 1993-1-1 
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Cross-Sections 
(From NA.2.17- NA to BS EN 1993-1-1:2005) 

For rolled sections and hot-finished and cold-
formed hollow sections: 

0.4  0.75 

For welded sections: 0.2 1.0 

0,LT 

The primary method 



LATERAL-TORSIONAL BUCKLING- Reduction Factor Lt 

ii) Rolled sections and equivalent welded sections. 
  Clause 6.3.2.3 of BS EN 1993-1-1 

The primary method 

LTB curve for rolled and equivalent welded cases 
(From NA.2.17- NA to BS EN 1993-1-1:2005) 

Section  Limits Buckling curve 

rolled doubly symmetric I and H 
sections and hot-finished hollow 

sections 

b/h≤ 2 b 

2<b/h ≤ 3.1  c 

b/h > 3.1  d 

Welded doubly symmetric sections 
and cold-formed hollow sections 

b/h ≤ 2  c 

2<b/h ≤ 3.1  d 

Angles (for moments in the major 
principal plane) 

--- d 

All other hot-rolled sections --- d 



LATERAL-TORSIONAL BUCKLING- Reduction Factor Lt 

ii) Rolled sections and equivalent welded sections. Clause 
 6.3.2.3 of BS EN 1993-1-1 

The primary method 

According to this method, the shape of the bending moment 
diagram, between braced sections, can be taken into 

account by considering a modified reduction factor LT, mod:  
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LATERAL-TORSIONAL BUCKLING- Reduction Factor Lt 

Table 6.6 – kc 
correction factors 

kc =1/√C1 ⇒ 
C1=1/kc

2 



LATERAL-TORSIONAL BUCKLING- Reduction Factor Lt 

Comparison between general curves and curves for rolled 
and equivalent welded sections (I-sections – h/b>2) 

The primary method 

Rolled 
method 
more 
Economy 



LATERAL-TORSIONAL BUCKLING- 

Calculation of Mcr Elastic critical moment 
 Method 1 -Method for doubly symmetric sections 

Access Steel Document SN003.This method only applies to: 
- uniform straight members  
- the cross-section is symmetric about the bending plane. 
- The conditions of restraint at each end are at least : � 
 *- restrained against lateral movement (lateral 
 restraints are defined as arrangements that only 
 prevent lateral deflection of the compression flange 
 i.e. Lateral deflection of the tension flange and 
 twisting are still possible.) 

 **- restrained against rotation about the longitudinal 
 axis (torsional restraints are defined as arrangements 
 that prevent both lateral deflection and twisting e.g. 
 restraint to both the tension and compression flanges 

 
 



LATERAL-TORSIONAL BUCKLING 

Calculation of Mcr Elastic critical moment 

Method 1 
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-Method for doubly symmetric sections 

E   is the Young modulus (E = 210000 N/mm2)  
G   is the shear modulus (G = 80770 N/mm2)  
Iz   is the second moment of area about the weak axis 

IT  is the torsion constant  
Iw  is the warping constant 
L   is the beam length between points which have lateral restraint 
 k and kw   are effective length factors  
Zg  is the distance between the point of load application and the shear 

 centre. 
C1 and C2 are coefficients depending on the loading and end restraint 

 conditions 

Access Steel Document SN003  



LATERAL-TORSIONAL BUCKLING- 

Calculation of Mcr Elastic critical moment 
 Method 1 -Method for doubly symmetric sections 

 
 

Destabilizing load stabilizing load stabilizing load 

Zg>0 

Zg=0 
Zg<0 

In the common case of normal support conditions at the 
ends (fork supports), k = kw =1.0. 
When the bending moment diagram is linear along a 
segment of a member delimited by lateral restraints, 
 or when the transverse load is applied in the shear centre, 
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Calculation of Mcr Elastic critical moment 

Method 1 -Method for doubly symmetric sections 
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Values of 1/√C1 and C1 for various moment conditions (load is 
not destabilising) 

End Moment Loading 
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LATERAL-TORSIONAL BUCKLING- 

Calculation of Mcr Elastic critical moment 
 

kc =1/√C1 ⇒ C1=1/kc
2 

Values of 1/√C1 and C1 for various moment conditions (load is 
not destabilising) 

1/√C1 
 C1

 Intermediate Transverse Loading 
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LATERAL-TORSIONAL BUCKLING- 

Calculation of Mcr Elastic critical moment 

Member with end moments and transverse loading 

Values of  C1 may be obtained from the curves given in Access Steel 
Document SN003. The moment distribution may be defined using two 
parameters : 
ψ  is the ratio of end moments. By definition, M is the maximum 
 end moment, and so : -1 ≤ ψ ≤ 1 (ψ = 1 for a uniform 
 moment) 
μ  is the ratio of the moment due to transverse load to the 
 maximum end moment M 
 Case a) (end moments with a uniformly distributed load) 
  μ=qL2/8M 
  Case b) (end moments with a concentrated load at mid-span) 
  μ=FL/4M  
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 μ > 0 if M and (q or F), bend the beam in the same direction. As shown above 



LATERAL-TORSIONAL BUCKLING- 

Calculation of Mcr Elastic critical moment 

Method 2 
The value of Mcr may be determined using the software 
‘LTBeam’ available from www.cticm.com 
Method 3 
As an alternative to calculating Mcr and hence      , the value 
of       may be calculated directly from the expression: 

LT
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wzLT UVD
C
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1

1
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C1  is a factor that allows for the shape of the bending 

 moment diagram. It may be conservatively taken as 
 equal to 1.0. For cantilevers C1 should be taken as 1.0 
 The factors in the  following Table assume that the 
 load is not destabilising. Where the load is destabilising 
 C1 should be taken as 1.0.  
 



LATERAL-TORSIONAL BUCKLING- 

Calculation of Mcr Elastic critical moment 

Method 3 

End Moment Loading 

Values of 1/√C1 and C1 for various moment conditions  



LATERAL-TORSIONAL BUCKLING- 

Calculation of Mcr Elastic critical moment 

Method 3 

Values of 1/√C1 and C1 for various moment conditions  

1/√C1 
 C1

 Intermediate Transverse Loading 



LATERAL-TORSIONAL BUCKLING 

Calculation of Mcr Elastic critical moment 

Method 3 

V   is a parameter related to slenderness: 
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LATERAL-TORSIONAL BUCKLING 

Calculation of Mcr Elastic critical moment 

Method 3 
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For doubly-symmetric hot-rolled UKB and UKC sections, 
and for cases where the loading is not destabilizing: 

For all sections symmetric about the major axis and not 
subjected to destabilizing loading, V =1.0 conservatively 



LATERAL-TORSIONAL BUCKLING 

Method 3 

β w is a parameter that allows for the classification of the 
 cross-section; for Class 1 and 2 sections, βw =1 
 while for Class 3 sections βw = W el,y / W pl,y. 

Calculation of Mcr Elastic critical moment 

Values of 
slenderness 
parameter V 
 



LATERAL-TORSIONAL BUCKLING 

Calculation of Mcr Elastic critical moment 

Method 3 

  is the minor axis non-dimensional slenderness of the 
 member, given by        , in which  
         ,               , where k is an 
 effective length parameter 
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LATERAL-TORSIONAL BUCKLING 

Calculation of Mcr Elastic critical moment 

Method 3 

Effective length kL for Normal and destabilising Loading for 

simply supported beams. 

kL 

1.0L + 2h 
 
 

1.2L + 2h 
 
 

1.2L + 2h 
 
 

1.4L + 2h 
 
 

h = depth of beam. 



LATERAL-TORSIONAL BUCKLING 

Calculation of Mcr Elastic critical moment 

Method 3 

1 Column 
2 Thin flanges 
3 Cantilever beam (buckling) 
Case of “free” warping 
conditions at support 

1 Column 
2 Cantilever beam (buckling) 
3 Stiffening plate (on both sides) 
4 Stiffeners (on both sides) 
Case of “restrained” warping 
conditions at support 



LATERAL-TORSIONAL BUCKLING Method 3 
Calculation of Mcr Elastic critical moment 

Both Flanges fully restrained against rotation on plan 

Both Flanges partially restrained against rotation on plan 



LATERAL-TORSIONAL BUCKLING Method 3 
Calculation of Mcr Elastic critical moment 

Both Flanges free to rotate on plan 

Partial torsional restraint against 
rotation about longitudinal axis 
provided by connection of bottom 
flange to supports 

Partial torsional restraint against 
rotation about longitudinal axis 
provided by pressure of bottom 
flange onto supports 



LATERAL-TORSIONAL BUCKLING 

Calculation of Mcr Elastic critical moment 

Method 3 

Beam 
compression 
flange free 
to rotate 
on plan 

(a) Thin end plate to web only 

Stability cleat 

Full 
torsional 
end restraint 
to beam 

(b) Bottom flange cleat 

Beam 
compression 
flange free 
to rotate 
on plan 

(c) Web cleats bolted to beam 

Compression 
flange free 
to rotate. 
No torsional 
restraint 

(d) Flange bolted to padstone 



LATERAL-TORSIONAL BUCKLING 

Calculation of Mcr Elastic critical moment 

Method 3 

Full torsional 
end restraint 
to beam 

(e) Full depth end plate 
welded to web and flange 

Compression 
flange 
rotation 
reduced. 
Torsional end 
restraint 

(f) Flange bolted to padstone, web stiffener 

(g) Full end stiffener 

Full torsional restraint. 
No rotation of 
compression flange 



Effective length parameter k and destabilising D for cantilevers 
without intermediate restraint. 



LATERAL-TORSIONAL BUCKLING 

Effective length parameter k and destabilising D for cantilevers 
without intermediate restraint. 



LATERAL-TORSIONAL BUCKLING 

Calculation of Mcr Elastic critical moment 

Method 3 
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For non-destabilizing loads, D = 1.0. 
For destabilizing loads, D = 1.2 for simply supported 
beams. As shown in the previous Table. 

In practice, destabilizing loads are only considered in cases 
for which the applied loading offers no resistance to lateral 
movement, e.g. a free standing brick wall on a beam. Normal 
loads from floors do not constitute a destabilizing load. 

D    is a destabilizing parameter to allow for destabilizing 
 loads (i.e. Loads applied above the shear centre of 
 the beam, where the load can move with the beam 
 as it buckles), given by: 



Design procedure for LTB 

1. Determine BMD and SFD from design loads 
2. Select section and determine geometry 
3. Classify cross-section (Class 1, 2, 3 or 4) 
4. Determine effective (buckling) length Lcr – depends on 
 boundary conditions and load level 
5. Calculate Mcr and Wyfy 
6. Non-dimensional slenderness 
7. Determine imperfection factor αLT 
8. Calculate buckling reduction factor χLT 

9. Design buckling resistance 
10. Check for each unrestrained portion 



LTB Example 

A simply-supported primary beam is required to span 10.8m 
and to support two secondary beams as shown below. The 
secondary beams are connected through fin plates to the 
web of the primary beam, and full lateral restraint may be 
assumed at these points. Select a suitable member for the 
primary beam assuming grade S 275 steel. 

Design loading is as follows: 



LTB Example 

Loading  

Shear force diagram 

Bending moment diagram 

Lateral torsional buckling 
checks to be carried out 
on segments BC and CD. 
By inspection, segment 
AB is not critical. 
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LTB Example 

Try 762×267×173 UB in grade S 275 steel. 

h = 762.2 mm 
b = 266.7 mm 
tw = 14.3 mm 
tf = 21.6 mm 
r = 16.5 mm 
A = 22000 mm2 
Wy,pl = 6200×103 mm3 
Iz = 68.50×106 mm4 
IT = 2670×103 mm4 
Iw = 9390×109 mm6 

Steel Properties 

40mm>tf = 21.6 mm>16mm   For S275 (to EN 10025-2) 
 fy = 265N/mm2  

, U=0.865 
, iz=55.8mm 



LTB Example 

From clause 3.2.6: E =210000N/mm2 and G ≈81000N/mm2 

Steel Properties 

Cross-section classification (clause 5.5.2): 

94.0265235235  yf

Outstand flanges (Table 5.2, sheet 2) 
cf = (b – tw – 2r) / 2 = 109.7 mm 
cf / tf = 109.7 / 21.6 = 5.08 
Limit for Class 1 flange = 9ε = 8.48 > 5.08 
∴ Flange is Class 1 

Web – internal part in bending (Table 5.2, sheet 1) 
cw = h – 2tf – 2r = 686.0 mm 
cw / tw= 686.0 / 14.3 = 48.0 
Limit for Class 1 web = 72 ε = 67.8 > 48.0 



LTB Example 

Cross-section classification (clause 5.5.2): 

∴ Web is Class 1 
Overall cross-section classification is therefore Class 1. 

Bending resistance of cross-section (clause 6.2.5): 

Mc.y,Rd=Mpl, Rd=Wpl.y fy/γM0 for Class 1 and 2 sections 

Mc.y,Rd=6200x103x265/1.0=1643x106 N.mm 

∴ Cross-section resistance in bending is OK. 

=1643 kN.m>1362 kN.m 



LTB Example 

Lateral torsional buckling check (clause 6.3.2.2) – 
Segment BC: 

mkNMEd .1362

1

,

M

yy

LtRdb

fW
M


 2&1, , classForWW yply 

Determine Mcr for segment BC (Lcr = 3200 mm) 
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For end moment loading C1 may be approximated from: 
C1 = 1.88 – 1.40ψ + 0.52ψ2 but C1 ≤ 2.70 
 ψ is the ratio of the end moments =1194/1362=0.88⇒ 
 C1= 1.05 



LTB Example 

Lateral torsional buckling check (clause 6.3.2.2) – 
Segment BC: 

According to the above table (by interpolation for ψ=0.88) 
C1= 1.08 



LTB Example 

Lateral torsional buckling check (clause 6.3.2.2) – 
Segment BC: 

According to the above table (by interpolation for ψ=0.88) 
C1= 1.08 
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Non-dimensional lateral torsional slenderness for segment BC: 
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Select buckling curve and imperfection factor αLT: 

From Table 6.4: h/b = 762.2/266.7 = 2.85 
For a rolled I-section with h/b > 2, use buckling curve b 



LTB Example 

Lateral torsional buckling check (clause 6.3.2.2) – 
Segment BC: 

From Table 6.3 of EN 1993-1-1: For buckling curve b, αLT=0.34 
Calculate reduction factor for lateral torsional buckling, χLT – 

Segment BC: 
0.1
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LTB Example 

Lateral torsional buckling check (clause 6.3.2.2) – 
Segment BC: 

Lateral torsional buckling resistance Mb,Rd – Segment BC: 

mmN
fW

M
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yy
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LTB Example 

Lateral torsional buckling check (clause 6.3.2.2) – 
Segment BC: using Method 3 

Lateral torsional buckling resistance Mb,Rd – Segment BC: 

wzLT UVD
C


1

1


93.0
1

1


C

  66.092.09.9335.571   zz

35.578.5532001  zz ikL

ψ is the ratio of the end 
moments =1194/1362=0.88 

, U=0.865 , iz=55.8mm , D =1.0 (Normal) , βw =1  



LTB Example 

Lateral torsional buckling check (clause 6.3.2.2) – 
Segment BC: using Method 3 
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From Table 6.3 of EN 1993-1-1: For buckling curve b, 
αLT=0.34 
Calculate reduction factor for lateral torsional buckling, χLT – 

Segment BC: 

Select buckling curve and imperfection factor αLT: 

From Table 6.4: h/b = 762.2/266.7 = 2.85 
For a rolled I-section with h/b > 2, use buckling curve b 



LTB Example 

Lateral torsional buckling check (clause 6.3.2.2) – 
Segment BC: using Method 3 
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LTB Example 

Lateral torsional buckling check (clause 6.3.2.2) – 
Segment BC: using Method 3 
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From NA.2.17- NA to BS EN 1993-1-1:2005:  
3.1>h/b = 762.2/266.7 = 2.85>2, use buckling curve C 

From Table 6.3 of EN 1993-1-1: For buckling curve C, 
αLT=0.49 
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,
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Using the second method: Rolled sections and equivalent 
welded sections. Clause 6.3.2.3 of BS EN 1993-1-1 



LTB Example 

Lateral torsional buckling check (clause 6.3.2.2) – 
Segment BC: using Method 3 
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LTB Example 

Lateral torsional buckling check (clause 6.3.2.2) – 
Segment BC: using Method 3 

m.kN
.

.
fW

M
M

yy

mod,LtRd,b
1615

01

265
1062009830 3

1






.0.184.0
1615

1362

,

OKisBCSegment
M

M

Rdb

Ed 



LTB Example 

Lateral torsional buckling check (clause 6.3.2.2) – 
Segment CD: 

mkNMEd .1362

1

,

M

yy

LtRdb

fW
M


 2&1, , classForWW yply 

Determine Mcr for segment CD (Lcr = 5100 mm) 
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For end moment loading C1 may be approximated from: 
C1 = 1.88 – 1.40ψ + 0.52ψ2 but C1 ≤ 2.70 
 ψ is the ratio of the end moments =1194/1362=0.88⇒ 
 C1= 1.05 



LTB Example 

Lateral torsional buckling check (clause 6.3.2.2) – 
Segment CD: 

Determine ψ from Table: 
 ψ is the ratio of the end moments =0/1362=0 ⇒ 
 C1= 1.88 
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Non-dimensional lateral torsional slenderness for segment CD: 
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The buckling curve and imperfection factor αLT are as for 

segment BC. 



LTB Example 

Lateral torsional buckling check (clause 6.3.2.2) – 
Segment CD: 

Calculate reduction factor for lateral torsional buckling, χLT – 

Segment CD: 
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LTB Example 

Lateral torsional buckling check (clause 6.3.2.2) – 
Segment CD: 

Lateral torsional buckling resistance Mb,Rd – Segment CD: 
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Segment CD is critical and marginally fails LTB check. 


