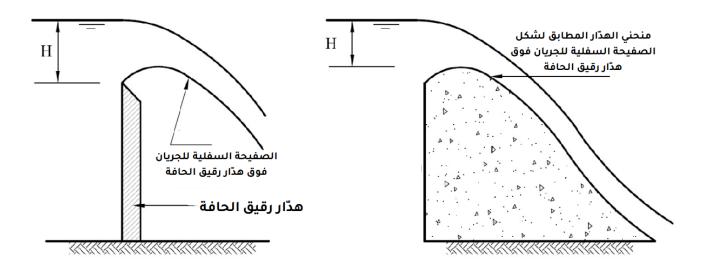

المشروع الأوّل


تصمیم منشآة هدّار علی قناة ري

تصميم منشآة هدّار على قناة ري- حساب أبعاد المنشآة

التعريف بالمنشآة: منشآة هدّار على قناة ري رئيسية، تعمل على رفع منسوب الماء بهدف تحويلها إلى قناة ري فرعية بهدف تسهيل عملية الري بالإسالة. <u>يتراوح ارتفاع مثل هذه المنشآة عادةً بين 2 حتى 5 متر</u>.

نوع المنشآة: منشأة هدّار ذو تصريف سطحي، نوع Ogee، حيث يتوافق شكل الصفيحة السفلية للجريان مع شكل الجريان فوق هدّار رقيق الحافة، وتمتلك مثل هذه الهدارات قدرة تصريفية عالية لذلك نجدها في العديد من المنشآت المائية.

الميدرولوجية أو من تصميم قناة الرّي، تتم عملية التصميم "الهيدروليكية بدايةً" وفق الآتي: Q_{max}

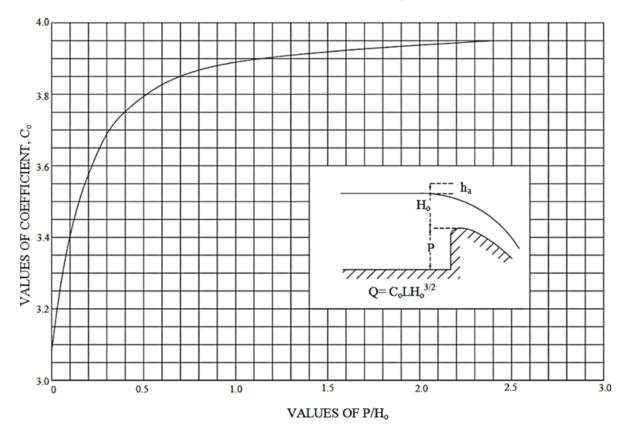
- تُفرض قيمة **التصريف النوعي للقناة q** وفقاً لنوع تربة الأساس (وهي قيمة معطاة في المشروع)

Table 2. Allowable Maximum Flood Concentration for Various Foundation Material

Character of Foundation	Allowable Maximum Flood Concentration	
Material	$(m^3/s/m)$	
Fine sand	5	
Coarse sand	10	
Sand and gravel	15	
Sandy clay 20		
Clay	25	
Rock	50	

ADOPTED FROM: Design of Concrete Gravity Dams on Pervious Foundation

q على Q_{max} تحديد **عرض الهدّار**. يتم بتقسيم


$$L = \frac{Q_{max}}{q} \dots (m)$$

· تُعطى الغزارة في حساب الهدّارات ذات النوع Ogee بالعلاقة الآتية (للإطلاع فقط):

$$Q = C.L.H_0^{\frac{3}{2}}$$

حيث: C معامل التصريف (ويشمل تأثير عدّة معاملات)، L عرض جبهة الهدّار، H_0 ضاغط الهدّار (مع الطاقة C الحركية $H_0 = H + rac{V_0^2}{2g}$).

ويُبين الشكل أدناه (للإطلاع) تحديد المعامل C تجريبياً بمعرفة النسبة P/H_0 التي تمثل نسبة ارتفاع جسم الهدّار من الأمام إلى قيمة ضاغطه الكلي.

ويمكن تعديل شكل علاقة الغزارة لهدّار Ogee لتصبح بالشكل (**المعتمدة في المشروع**):

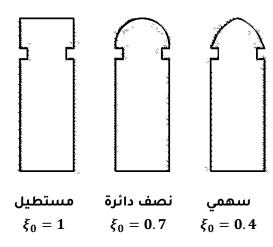
$$Q=m.\,arepsilon.\,\sigma\,.\,L.\,\sqrt{2g}\,.\,H_0^{3\over 2}$$

m. معامل التصريف، قيمته 0.48-0.49. (تُؤخذ في المشروع 0.49).

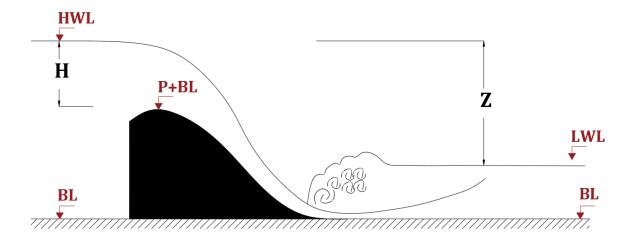
- يُحسب ضاغط الهدّار الكلي (مع الطاقة الحركية الناتجة عن سرعة الاقتراب) من العلاقة:

$$H_0 = \left(\frac{Q_{max}}{m. \, \varepsilon. \, \sigma. \, L. \, \sqrt{2g}}\right)^{\frac{2}{3}}$$

حيث:


m : معامل التصريف كما ذكرنا آنفاً.

ع : معامل الانضغاط الجانبي (في حالة المشروع الانضغاط الجانبي تسببه الأكتاف فقط في حال عرض جبهة $\epsilon=1$ تكون $\epsilon=1$ تكون $\epsilon=1$ تكون $\epsilon=1$ تكون القناة $\epsilon=1$ تكون القناة وخير المدّار وجود ركائن المدّار وحود ركائن المدّار وحد ركائن المدّار وحد ركائن المدّار وحدّار وحدّار وحدّار وحدّار وح


يُحسب معامل الانضغاط الجانبي من العلاقة:

$$\varepsilon = 1 - 0.1 \times 2 \times 2\xi_0 \times \frac{H_0}{L}$$

طبعاً العلاقة السابقة تعتبر وجود الانضغاط عند أكتاف المنشآة فقط، حيث ξ_0 معامل شكل رأس الكتف، ويُحدد وفقاً لشكل رأس الكتف إن كان مستطيلاً أو نصف دائرة أو سهمياً,

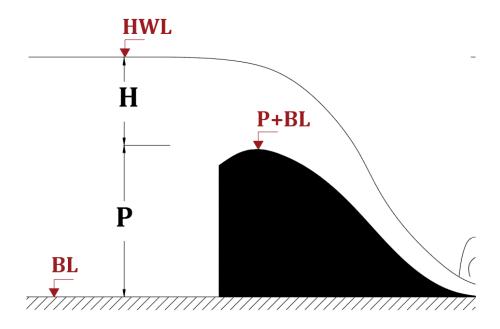
معامل الغمر (يؤخذ بالحساب عندما يكون الهدّار مغموراً فقط، أي Z < H، باعتبار Z تمثل فرق منسوب الماء أمام وخلف الهدّار، وفي حالة عدم وجود غمر يكون $\sigma = 1$).

بعد حساب الضاغط الكلى للهدّار H_0 ، يمكن عندئذٍ **حساب الضاغط المائي**، من العلاقة الآتية:

$$H = H_0 - \frac{\alpha v_0^2}{2q}$$

lpha : معامل عدم انتظام السرعة (معامل الطاقة الحركية)، ويمكن اعتباره 1، كون المقطع موشوري. وتُحسب سرعة الاقتراب من العلاقة (باعتبار مقطع القناة قبل الهدّار مستطيل الشكل):

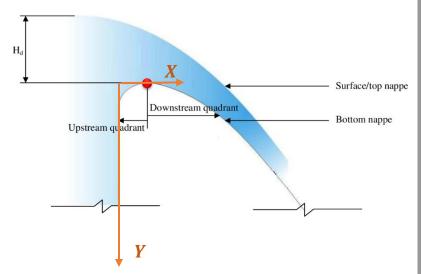
$$v_0 = \frac{Q_{max}}{B' \cdot H_1}$$


ارتفاع الماء من جهة الحوز العلوي (أمام الهدّار)، بينما B' عرض القناة أمام الهدّار، حيث تُحسب سرعة H_1 الاقتراب على بعد معين أمام الهدّار تكون المساحة المائية عندها $B'.H_1$ (أي باعتبار مقطع القناة مستطيل الشكل).

ويمكن إيجاد H_1 ، كون معلوم لدينا القيمة التي يجب رفع منسوب الماء إليها أمام الهدّار وكذلك منسوب سرير القناة في موقع إنشاء الهدّار:

$$H_1 = HWL - BL$$
منسوب سرير منسوب الماء القناة لأعلى من الأمام

P بعد تحديد H ضاغط الهدّار المائي، يمكن تحديد ارتفاع الهدّار من الأمام


$$P = H_1 - H$$

رسم منحني الهدّار

كما علمنا آنفاً، فإنّ الهدّار من نوع Ogee الذي له منحني يطابق شكل الصفيحة السفلية للجريان فوق هدّار رقيق الحافة. يمكن الحصول على إحداثيات شكل السطح الخارجي للسد الهدار (Ogee)، بدلالة ضاغط الهدّار المائي $H = 1 \, m$ من الجدول أدناه، والذي يبين إحداثيات غرايغر من أجل ضاغط مائي قدره $H = 1 \, m$

H=1 m			
X	y	X	y
0.000	0.126	2.100	1.456
0.100	0.036	2.200	1.609
0.200	0.007	2.300	1.769
0.300	0.000	2.400	1.936
0.400	0.007	2.500	2.111
0.500	0.027	2.600	2.293
0.600	0.063	2.700	2.482
0.700	0.103	2.800	2.679
0.800	0.153	2.900	2.883
0.900	0.206	3.000	3.094
1.000	0.267	3.100	3.313
1.100	0.355	3.200	3.539
1.200	0.410	3.300	3.772
1.300	0.497	3.400	4.013
1.400	0.591	3.500	4.261
1.500	0.693	3.600	4.516
1.600	0.800	3.700	4.779
1.700	0.918	3.800	4.990
1.800	1.041	3.900	5.326
1.900	1.172	4.000	5.610
2.000	1.310	4.500	7.150

$$X_{(H)} = x_{(H=1m)} imes H$$
 $Y_{(H)} = y_{(H=1m)} imes H$ الضاغط المائى للهدّار H