
المشروع الأوّل

تصمیم منشآة هدّار علی قناة ري

تصميم حوض التهدئة لتخميد القفزة المائية

مبدأ عمل حوض التهدئة

 h_1 عند تحديد نوع القفزة المائية، فرضنا أنّ العمق المرافق الأوّل للقفزة h_1 يساوي h_2 ، والغرض هو تقريب التصبح تساوي أو أدنى من h_c في حال نتج لدينا قفزة مدفوعة، بحيث تُغمر القفزة، لكن هذا سيؤدي إلى زيادة قيمة العمق المرافق الثاني للقفزة و h_c هذا الفرق في العمق بين قيمة h_2 العمق المرافق الثاني للقفزة و h_2 عمق الماء الطبيعي في القناة، هو قيمة عمق حوض التهدئة (h_2) الذي ستتحول ضمنه القفزة إلى مغمورة.

d تحدید عمق حوض التهدئة

لزيادة الفرق بين h_2 ومكن تصعيد قيمة h_2 بضربها بـ k وهو معامل الغمر للقفزة، وتتراوح قيمته في المجال (1.1 t_2 - 1.05).

d ويكون عمق الحوض

$$d = k h_2 - t - \Delta Z$$

ΔZ هي قيمة الانخفاض في مستوى الجريان عند خروجه من حوض التهدئة، ويُحسب من تطبيق معادلة الطاقة (برنولي) بين مقطع يقع ضمن الحوض ومقطع يقع بعد الحوض، بحيث تنتج العلاقة الآتية:

$$\Delta Z = \frac{\alpha \cdot q^2}{2g \cdot \varphi^2 \cdot t^2} - \frac{\alpha \cdot q^2}{2g \cdot (k h_2)^2}$$

. $oldsymbol{q}$ الغزارة النوعية للقناة التي أقيم عليها الهدّار. و $oldsymbol{lpha}$ معامل عدم انتظام السرعة ويمكن اعتماده $oldsymbol{l}$

ويمكن في المشروع إهمال قيمة $oldsymbol{\Delta Z}$ للأمان (بحيث تزداد قيمة $oldsymbol{d}$ عمق حوض التهدئة).

تعتبر القيمة أعلاه لـ $m{d}$ قيمة مبدأية، يتم على أساسها إعادة حساب $m{h}_c$ العمق المضغوط من العلاقة:

$$h_c = \frac{q_c}{\varphi \cdot \sqrt{2g(E_0 - h_c)}}$$

 $E_0 = H_1 + rac{lpha\,v_0^2}{2g} + d$: E_0 ولكن هذه المرة تصبح قيمة

ونعتبر من جديد $m{h}_c = m{h}_1$ العمق المرافق الأوّل، ومنه يُحسب العمق المرافق الثاني (من علاقة الأعماق المترافقة في المحاضرة السابقة)، ومن ثمّ إعادة حساب $m{d}$ من جديد. وتُكرر هذه الخطوات حتى ثبات قيمة $m{d}$

ويمكن ترتيب حساب $oldsymbol{d}$ عمق حوض التهدئة في الجدول الآتي:

	d	$h_1 = h_c$	h ₂	$d = k h_2 - t - \Delta Z$
التقريب الأوّل	0	$\frac{q_c}{\varphi \cdot \sqrt{2g(E_0 - h_c)}}$ $E_0 = H_1 + \frac{\alpha v_0^2}{2g} + d$	$\boxed{\frac{h_1}{2} \left[\sqrt{1 + 8 \left(\frac{h_{cr}}{h_1} \right)^3} - 1 \right]}$	*
التقريب الثّاني	*	$\frac{q_c}{\varphi \cdot \sqrt{2g\left(E_0 - h_c\right)}}$	$\boxed{\frac{h_1}{2} \left[\sqrt{1 + 8 \left(\frac{h_{cr}}{h_1} \right)^3} - 1 \right]}$	**
التقريب الثالث	**	$\frac{q_c}{\varphi \cdot \sqrt{2g\left(E_0 - h_c\right)}}$	$\boxed{\frac{h_1}{2} \left[\sqrt{1 + 8 \left(\frac{h_{cr}}{h_1} \right)^3} - 1 \right]}$	***

إذا كان **=*** في الجدول السابق، إذا تكون قيمة d قد أصبحت ثابتة

L_k تحديد طول حوض التهدئة

يتعلق طول حوض التهدئة بشدة القفزة المائية (أي بنموذجها، وكما نذكر من مقرر هيدروليك الجريان الحر في الأقنية المكشوفة أنّ القفزة تصّنف إلى خمس نماذج وذلك وفقاً لعدد فراود المحسوب عند العمق المرافق الأوّل للقفزة). أي يمكن القول أنّ طول الحوض يتعلق بعدد فراود Fr_1 عند العمق المرافق الأول h_1 .

وبما أنّ القناة مستطيلة الشكل، فإنّ عدد فراود يُحسب من العلاقة:

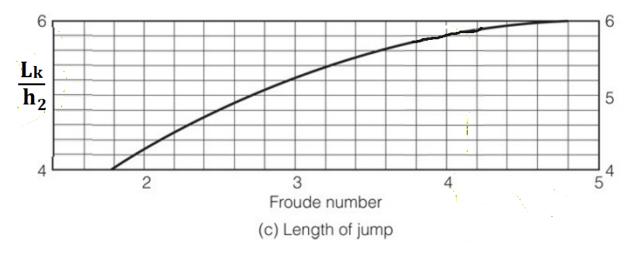
م. بتول سلیمان Eng. Batoul Suleiman

$$Fr_1 = \frac{v_1}{\sqrt{g \cdot h_1}}$$

حيث: h_1 حيث القيمة المحسوبة ضمن آخر سطر في جدول حساب d عمق الحوض، و v_1 هي سرعة الجريان $v_c=q_c/h_1$ عند العمق المضغوط عند العمق المصغوط عند العمق العمق

وحسب المجال الذي سيقع ضمنه Fr_1 يتم تحديد طول الحوض (من علاقات تجريبية أو بيانياً من المخططات ذات الصلة الواردة في المراجع الأكاديمية):

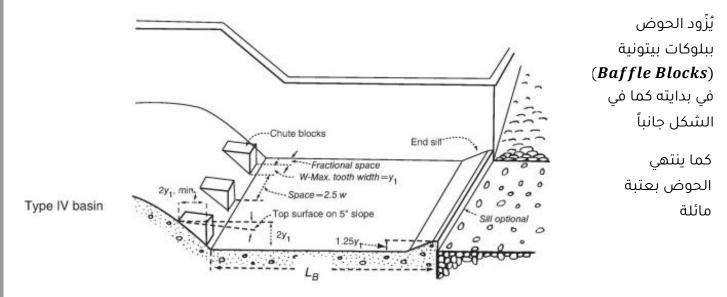
$Fr_1 \in]1, 1.7]$	$Fr_1 \in]1.7, 2.5]$	$Fr_1 \in]2.5, 4.5]$	$Fr_1 \in]4.5,9]$	$Fr_1 > 9$			
قفزة متموجة	قفزة ضعيفة	قفزة متذبذبة	قفزة مستقرة	قفزة قوية			
ويوجد أربع أنواع لحوض التهدئة وفقاً لعدد فراود Fr_1 (وهي الأنواع II , III , III)، حيث يكون استخدمها							
				${m Fr_1}$ کالآتي:			


Fr ₁	Type	التطبيق	
1.7 → 2.5	Type I	بسيط	
$2.5 \rightarrow 4.5$	Type IV	قنوات الري (حالة المشروع)	
$Fr_1 > 4.5 \& V_1 < 18 \ m/s$	Type III	سدود صغيرة (سرعات منخفضة)	
$Fr_1 > 4.5 \& V_1 > 18 \ m/s$	Type II	سدود عالية	

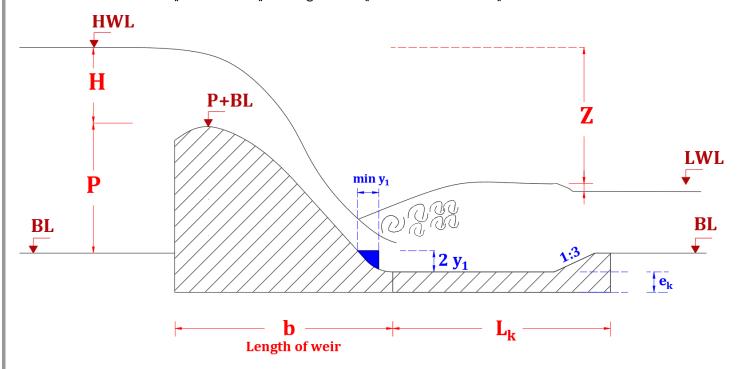
$Fr_1 = 1.7 \rightarrow 2.5$ النوع I

تكون القفزة ضعيفة، ولا حاجة لأي ملحقات

$(Fr_1 = 2.5 \rightarrow 4.5)$ النوع • 10.


تكون القفزة غير مستقرة (متذبذبة)، ويُحسب طول الحوض من المخطط أدناه:

جامعة دمشق كلية الهندسة المدنية


مقرر المنشآت المائية المحاضرة الثالثة

م. بتول سلیمان Eng. Batoul Suleiman

شكل الحوض في المقطع الطولي للنوع *IV*:

شكل الحوض كمنظور هو كما في الشكل أعلاه، أمّا في المقطع الطولي، فهو كما في الشكل أدناه:

[2.5
ightarrow 4.5] ينتمي للمجال Fr_1 ينتمي للمجال Fr_2 ينتمي للمجال Fr_3 بنسبة للنوعين الآخرين، يمكن الإطلاع عليها في المراجع، حيث أنّها يُحدد طولها وفقاً لعدد فراود وتكون إضافة البلوكات وشكل الحوض عند نهايته بما يتوافق مع النوع.