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Abstract

A “sequential processing” algorithm using bicolor interchange that five-colors
an n vertex planar graph in O(n2) time tvas given by Matula, Marble, and Isaacson
[MM1 ‘721. Lipton and Miller used a “batch processing” algorithm with bicolor
interchange for the same problem and achieved an improved O(n log n) time bound
[LM 781. In this paper we use graph contraction arguments instead of bicolor
interchange and improve both the sequential processing and batch processing

methods to obtain five-coloring algorithms that operate in O(n) time.
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1. Introduction and Summary.
We present two different linear-time algorithms for coloring the vertices of a

planar graph with at most five colors. Our methods utilize a recursive graph
contraction process to order the vertices followed by a color assignment  pass
through the ordered vertices (no assigned color values are ever changed).

Several variations of a “sequential processing” coloring algorithm were pre-
viously given in the literature [MM1 721. These algorithms &color any planar
graph in O(n) time and 5-color such a graph in O($) time. Lipton and Miller [LM
781 have employed a “batch processing” approach to obtain an improved  planar
graph 5-coloring algorithm operating in O(nlogn)  time (see also [S 79)). In this
paper we improve both the sequential processing and batch processing algorithm8
by using graph contraction to obtain linear-time behavior in each case.

The sequential processing and batch processing algorithms are paradigm8
representing different philosophies in algorithm design and it is worthwhile  to
contrast how linear--time is achieved in each case. Both paradigms employ recur-
sion to reduce the problem (planar graph 5-coloring) on an n vertex graph to
the same problem on an tr’ < n vertex graph. For each successive  reduction

. the sequential processing paradigm utilizes time bounded by c(n - n’) for some
fixed constant c. An overall linear time bound is thus obtained even though the
number of reductions may itself be of linear order. Each reduction in the batch .
processing paradigm can use time up to cltz for some fixed constant cl, but each
such reduction involves a sufficient proportion of the vertices to obtain n’ < c2n
for some fixed constant c2 < 1. An overall linear time bound is obtained  in this
case since the total reduction time is less than ~~=,c& = cln/(l  - ~2).

- In the next section we develop some preliminary graph coloring theorems and
define contraction. We then give a concise proof of planar graph S-colorability
utilizing the contraction argument. In Section 3 we present a linear-time planar
graph 5-coloring algorithm of the sequential processing type which is motivated
by the preceeding  contraction-based 5-colorability proof. A batch processing type
linear-time planar graph 5-coloring algorithm is developed in Section 4. The final
section surveys some issues arising from our algorithms.

2. Graph Coloring  Theorems and Graph  Contraction.
The algorithms we develop, as well as those algorithms previously cited [MM1
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72, LM 781, can be closely associated with specific inductive proofs of planar
graph 5-colorability.  The realization of an efficient recursive algorithm from an
inductive proof requires careful design and analysis of appropriate data structures.
An elementary example of this process is given by the following linear-time planar
6-coloring algorithm (MM1 721, which will be needed later.

Lemma 1. Every planar graph can be colored with at most six colors.

Inductive Proof. Every graph on n < 6 vertices can be 6-colored.  Assume-
every graph on at most n vertices can be 6-colored for a given n 2 6, and let
the planar graph G have n + 1 vertices. From Euler’s Theorem [H 68, p. 1031
it follows that. some vertex u of G has degree at most five. By hypothesis G - u
can be six-colored and u may then be assigned one of the six colors not occuring
on its at most five adjacent vertices. The lemma follows by induction. o

ALGORITHM &COLOR.
Given an n vertex planar graph G in adjacency list form, this algorithm

determines a 6-coloring of G.

Step 1. [Establish degree lists.] For each j where 0 < j < n - 1, form a doubly- -
linked list of all vertices of G of degree j.

Step 2. [Label vertices smallest degree last.] For i = n, n - 1, n*- 1,. . . , 1
designate the first vertex of the non-vacuous j degree list of smallest  j
as vertex t/i. Delete vi from the j degree list. For each vertex U’ that
was adjacent to tli in G and remains in some degree list, say f, delete

- u’ from the jr degree list and insert u’ in the j9 - 1 degree list.

Step 3. [Color vertices.] For i = 1,2,. . . , n, assign vertex t)i the smallest  color
value (which must be some integer between one and six) not occuring on
the vertices adjacent to t)i that have already been colored.

Claim. Algorithm 6-COLOR  determines a &coloring of any n vertex planar graph
and can be implemented to run in O(n) t’ime.

Proof. In Algorithm &COLOR  each vertex Vi, for 1 < i < n, is chosen so- -
that it has minimum degree in the planar graph G - {ui+l, Ui+a,. . . , u,}. Hence
vi is adjacent to at most five previously colored vertices when its color is assigned
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in Step 3, so Algorithm 6-COLOR yields a &coloring of any planar graph.  To
show that Algorithm 6-COLOR can be implemented with a linear time bound,
first note that the adjacency list data structure has length of order the number
of edges of G which is O(n) since the number of edges is at most 3n - 3 for any
planar n vertex graph. Establishment of the degree structure in Step 1 requires
O(n) time. For the processing of vertex vi in Steps 2 and 3 let degtee(ui)  refer to
the degree of t)i in the original tz vertex graph G, so degree(ui) is the length of the
adjacency list for Vi. In Step 2 the determination of the vertex labelled Vi requires

.
O(J) = O(degree(v,))  time. Deletion of vi and the deletion and reinsertion of
the at most degree(uJ remaining vertices adjacent to Vi can be accomplished in
O(degree(ui))  time (by traversing the adjacency list of Vi). Step 2 thus requires

OKi”,1 degfet?( Vi)) = O(n) time since Cy=, degree(ui) equals twice the number
of edges of G. Scanning the adjacency list of Vi to determine the color of t~i
in Step 3 requires time O(degree  tli), so Step 3 can also be realized in O(CTS1

.

degWe(UJ) = O(n) time. 0

In Algorithm 6COLOR the output of Step 2 is an ordering of the vertices
Ul,U2,***, u,, of the planar graph G such that ui is adjacent to at most  five
preceeding vertices uj, j < i. Step 3 then computes a 6-coloring of G from this
ordering in O(n) time. There is. a generalization of this repult tha!, will be used: . :.. * ,.
for the color assignment phase’ of our subsequent &or&h&/  Ah &&~&&nt.~iet .
I of vertices of G has no pair of vertices of I adjacent. Two disjoint independent.
sets I, J of G are termed adjacent whenever some vertex in f is adjacent to some
vertex in J.

L e m m a  2. Let G be.a.gtaph with n vertices and C edges. Let 11, I&. . . , &, be a
partition of the vertices  of G into independent  sets wheii each & for 1 5 k 5 p
iS adjacent to at most j sets lkl with k’ < k: Then G may be (j+ 1).coloted  by
an algorithm requiting O(n + t) time.

Proof. Let G be given in adjacency list form. Color the vertices of G by the
following procedure. Color all vertces of 11 with color value 1. For k = 2,3,. . . ,p,
traverse the adjacency list of all vertices of Ik to find which color values of the set

u 2 , j + 1) have already been assigned to vertices adjacent to vertices of I&.
Tder: can be at most j such colors on adjacent vertices since I& is adjacent to at
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most j sets Ip. Thus G is colored in j+ 1 colors. The coloring process described
requires traversingthe adjacency list of each vertex once, which requires O(n+ C).
time, along with other activities taking O(n) time. Thus the coloring  drocedure
is realizable by an algorithm requiring O(n + 8) time. o

Both of our subsequent algorithms in their contraction phase will deter-
mine from a planar graph G a partition of the vertices into independent sets

Il,IZ,  l
. . , IP, where for any 1 < k < p, the set Ik is adjacent to at most four- -

sets IkI with k”< k. The linear-time color-assignment phase of each algorithm
is then obtained from Lemma 2.

The standard proof of 5-colorability of planar graphs utilized in graph theory
texts [B 62, p. 213; H 68, p. 130; BC 71, p. 223; BM 76, pi 156; B 79, p. 951 is due
to Heawood [H 901 published in 1890. The argument is inductive and similar to
the preceeding proof of 6-colorability with the following extension. When a vertex
u of degree five is to be added to the 5-colored  graph G - u, an appropriate color
interchange [interchanging colors i and j on a maximal connected subgraph  of
vertices colored i or j] is shown to exist if needed to guarantee that u has only four
distinct colors occuring on the five adjacent vertices. An algorithm incorporating
this color interchange step via sequential processing was given by Matula, Marble
and Isaacson. [MM1 721 yielding a planar graph 5-coloring algorithm requiring*
O(n2) time. Lipton and Miller [LM 781 applied a batch processing approach to
the color interchange step to achieve an O(n logn) 5-coloring algorithm. We now
define graph contraction and present a concise proof of planar graph S-colorability
based on contraction. This proof motivates our linear time S-coloring algorithms.

An elementary contraction of a graph G is obtained by identifying two
adjacent vertices u, u and the edge uu as a new vertex w. More specifically, we
perform such a contraction by removing u and adding a new vertex w adjacent

. to those vertices previously adjacent to u or u. A graph H is a conttactioa  of
G if H can be obtained from G by a sequence of elementary contractions. Note
that a contraction of a planar graph is also a planar graph [e.g. see LT 791.

Theorem 3. Every  planar graph is S-colorable.

Proof. Every graph on five or less vertices can be colored in at m&t five
colors. Assume every planar graph on t‘~ vertices can be five-colored for a given

5



n 2 5, and let the planar graph G have n + 1 vertices. It follows from Euler’s
theorem that some vertex u of G has degree at most five. If deg(u) < 4, b y
hypothesis G - u can be S-colored and then u may be assigned one of the five
colors not occuring  on the at most four vertices adjacent to u. If deg(u) = 5,
then there are two non-adjacent vertices u, w among the five vertices adjacent
to u, since five vertices cannot all be pairwise adjacent in a planar  graph.  The
contraction H of G obtained by identifying the three vertices u, u, w is then 5-
colorable by hypothesis. Assign every vertex in G other than {u, u, tu} the same
color as in this S-coloring of H and assign both u and UJ the color of the vertex
in H created by the contraction of u, u, and w. This provides a S-coloring of
G- u in which at most four distinct colors appear on the five vertices adjacent
to u, so G may be 5-colored. By induction the theorem holds. o

3. The Sequential Contraction Algorithm.
The proof of S-colorability in Theorem 3 differs from the proof of 6-colorability

in Lemma 1 only when the planar graph encountered in the induction has mini-
. * mum degree five. In this case contraction is ufed rather than vertex deletion.

We now investigate whether the contraction process can be implemented in a
sufficiently efficient manner so that we can improve Algorithm 6COLOR  to
achieve aJnear time S-coloring algorithm. Thus we seek to determine w&J&r the
following two steps can be implemented in time bounhed.by  a constant whenever
the algorithm through recursion encounters a planar graph  of minimum  degree
five.

Contraction Process
Step 1. Find a vertex u of degree five and two non-adjacent vertices u, w .

among the five vertices adjacent to u; .

Step 2. Update the appropriate data structures to correspond to the struc-
ture of the graph resulting from the contraction.

It is perhaps surprising to realize that implementation of Step 1 in constant-
time is a non-trivial problem. Certainly determining a vertex u of degree five
along with its remaining adjacent vertices ~1, us, ~3, ~4, u5 in the reduced graph
can be accomplished by using degree lists as in Algorithm 6COLOR,  at a cost of .
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constant time per vertex. The problem arises in determining a non-adjacent  pair
among the vertices ul, ~2, ~3, ~4, ~5. This would require only covftant time if
the adjacency matrix were available, but constructing the adjacenc$  matrix  for
an n vertex graph requires n(n2) time and is therefore precluded. Observe that if
only the adjacency list data structure of a graph is available, then determination
of whether or not a pair ui, uj of vertices are adjacent requires time proportional
to min{degree(u&  degree(Q)  since the adjacency list of either vertex u,- or Uj
must be scanned to determine the presence or absence of the other vertex.’

The preceding observation dictates that we must be concerned with the
vertex degrees of the vertices adjacent to a vertex of degree five in implementing
Step 1 of the contraction process. The graph  G, of Figure  1 suggests a possible
complication.

[ F i g u r e  l]

The class of graphs G,, for n = 14,16,17,.  . . , illustrates that the sum of the
vertex degrees of the vertices adjacent to any given vertex in a planar graph may
be arbitrarily high. In order to design our algorithm we shall need an additional
result on the structure of planar graphs, which is stated in the following theorem.

Theorem  4. Every planar graph has either:

0i a vertex  of degree at most four, or ’ Y
?

(ii) a vertex  of degree  iiVe adjacent to at least four vertices each having  degree
at most eleven.

We shall defer a proof of Theorem 4 until the end of this section, and first
give a planar graph S-coloring algorithm based on the result of Theorem 4.

It should be noted that the following algorithm operates on a planar graph
in a purely combinatorial manner without reference to any particular embedding.

ALGORITHM SC [Sequential Contraction S-Coloring]
Given an n vertex planar graph G in adjacency list form, this algorithm

determines a S-coloring of G, In the following description G refers to the original
planar graph; and G* refers ‘to a graph that initially has the same structure as
G, but which is reduced  by deletions and contractions until it is the null graph.
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At all times each vertex of G* corresponds to an independent set of vertices of
G.

Step 1.

Step 2.

Step 3.

Step 4.

[Establish adjacency structure and degree lists for G’.] Create  an ad-
jacency list data structure for the graph G* which is initially the same
graph as G. For each 0 < j < n- - - 1 with j # 5, form a list of all
vertices of G* of degree j (the j-degree lists). Form two distinct lists for
vertices of degree five depending on whether or not the degree five vertex
has at least four adjacent vertices of degree at most eleven (respectively
the 51111-degree  and 5-degree  lists).

[Delete the minimum degree vertex in G’ if degree is at most four.] If
the j-degree lists for 0 ,< j 5 4 are all vacuous,  go to Step 3. Otherwise,
determine u* to be the first vertex in the non-vacuous j-degree list of
smallest j. Delete u* from G* and add u* to the stack of vertices
deleted. Update the adjacency list data structure and degree lists for
G* to reflect the deletion of u*. Repeat Step 2.

[Contraction process for G’ of minimum degree five.] If C’ is not null
determine u* to be the first vertex in the 5[111-degree list. Among
the four vertices adjacent to u* in G* having degree at most eleven,,
determine a non-adjacent ‘pair u*,’ w*. Delete u* flom G’ and add u*
to the stack of vertices deleted. Update the adjacency list data structure
and degree lists to correspond first to the deletion of u* from G’, and
then to the contraction of u* and w* into a new vertex y* of G*, where
y’ represents the union of the independent sets of G represented by u*
and w*. If G* is still not null, go to Step 2.

[Color vertices of G.) While the stack of vertices deleted from G* is
not empty, remove the top vertex u* from the stack. Traverse the
independent set { ul, u2, . . . , uk} of vertices of G represented by u* and
color all these vertices with the same smallest positive integer value
(which must be between one and five) that has not previously been
assigned as the color of any vertex of G adjacent to any vertex of the

Set {W,~2,***,U)*

Theorem 5. Algorithm SC determines  a S-coloring of any n vertex  planar graph.
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Proof. The following two statements are easily verified by induction  on the
number of steps executed by the algorithm. As the algorithm proceeds, each
vertex of G* corresponds to an independevt  set I,+ of vertices in G, such that:. .
two vertices u* and w* of G* are adjacent if and only if Z,,e and I& are kajacent
in G. G* remains planar throughout the algorithm. Let v* be a vertex deleted. .
from G* during an execution of either Step 2 or Step 3. Then Iv* is adjacent in
G to at most four independent sets corresponding to vertices in the new graph
G* resulting from the execution of Step 2 or Step 3. (Note that Step 3 not only
deletes u* but contracts two other vertices.) By Theorem 4, the SI”l-degree  list
is never empty when the algorithm reaches Step 3. If u* is a vertex on the SI”l-
degree list, at least two of the four neighbors of u* with degree eleven or less are
non-adjacent (otherwise G* would contain a S-clique and would be non-planar).
It follows that the algorithm can never get stuck in Step 3, and it repeats Steps
2 and 3 until G” is null. If u;, u;,
G* by Steps 2 and 3, IV*, Iv+,

. . . , u; are the successive vertices deleted from

1 a . . . , Iv; is a partition of G* into independent sets
such that any I,, ; is adjacent to at most four sets Iv; with j > i. By Lemma 2,
Step 5 successfully S-colors G. o

We now specify the data structures to be used in a linear-time implementation
of Algorithm SC. We assume that G is represented initially by a singly-linked
adjcency list for each vertex. The ‘adjacency list‘*data  structure created for G*
is doubly linked and has crosspointers for each edge, i.e., vertex u* in the list
of vertex u* has a pointer to vertex u* in the list of vertex u* and vice-versa.
A vertex u* of G* points to a circular list consisting of the verticei in the

e corresponding independent set of G. Note that constructing the union of two
disjoint ‘circular lists requires only O(1) time. Initially each vertex u of G* = G
points to a list containing the single element u, The degree  lists for G* are doubly
linked. The stack of deleted vertices is initially empty.

Theorem 6. Afgorithm SC can be implemented to run  in O(n) time.

Proof. Given as input the adjacency list of an n vertex planar  graph,  the
data structures described prior to the statement of Theorem 6 can be constructed
in Step 1 of Algorithm SC in O(n) time. We shall now show that the execution
of either Step 2 or Step 3 resulting in the deletion of a vertex u* from G’ caxi  be
completed in time bounded by a constant. We must consider two cases.
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Case 1. G* has minimum degree at most four. Then the vertex u* to be
deleted is found in Step 2 in O(1) time by extraction from the non-vacuous j-
degree list of smallest j, where 0 < j < 4. By traversing at most four vertices- -
of the adjacency list of u* and using the crosspointers, the adjacency structure
for G* can be updated to reflect deletion of u* in O(1) time. During the same
traversal of the adjacency list of u*, each vertex w* adjacent to u* can be deleted
from its j-degree list and inserted in the (j- I)-degree list. There are two special
cases:

(i) j = 6 Then the degrees of the five vertices other than u* adjacent to w*
should be noted in order to insert w* in the appropriate 5i111- or
S-degree list;

(ii) j = 12 Then the eleven vertices other than u* adjacent to w* should have
their degrees checked and if any, say u*, is in the S-degree list, its
five adjacent vertices should have their degrees observed to see if u*
should be moved to the 51”1-degree  list as w’ is reduced from degree
twelve to degree  eleven.

Note that all such updating of the degree structure requires only O(1) time.

Case 2. G* has minimum degree five. Then u* is extracted from the 51111-
degree list in Step 3. The adjacency lists of the four vertices of degree at most
eleven adjacent to u* are traversed in O(1) time to find a non-adjacent pair u*,
w*. The updating of the data structures corresponding to the deletion of u* from
G* in Step 3 can be implemented in O(1) time by the same arguments used in

a
Case 1. It remains to consider implementation of the contraction.

The circular list representing I, + is the disjoint union of the lists representing
Iue and Iw+ and can be constructed in O(1) time. To update the adjacency
structure for G* we initialize the adjacency list of g* to be the list of u*, and
we traverse this, list to change the crosspointers of other entries that previously
pointed to u* so that they now point to y*. We then take each vertex Z* of the ’
adjacency list of w* and search the adjacency list of y* to see if z* is already there.
If not, we add Z* to the adjacency list of y’ and correct the crosspointers in z*‘s
list to point to y’ rather than w*. If Z* is already in the list of y’, corresponding
to the former edges z*u* and z*w* becoming a single edge z*y* after contraction,
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then the crosspointer of w*z* is used to delete what would otherwise become a
second reference to y* in Z*‘S list. Since the lengths of the adjacency lists of u*
and w* are both at most eleven, this updating of the adjacency structure for G’
requires  at most O(1)  time.

As we update the adjacency structure for G* we also update the degree lists
for G* to reflect the contraction. Vertices u* and wt are deleted from their degree
lists and y* is inserted into its appropriate degree iist depending on its resulting
degree, which is somewhere between four and twenty. Any vertex z* now adjacent
to y* need be moved in the degree lists only if either Z* was previously adjacent
to both u* and ?,u*, in which case it is removed from its J’ degree  list and inserted
in the j - 1 degree list (handling the appropriate special cases i = 6 and i =
12 as in the discussion of Case l), or if Z* has degree five, in which case the
degrees of the vertices adjacent to z* are observed to assure placement of z* in
the appropriate 51111- or S-degree list. The total number of vertices encountered
by all such references in the contraction phase whose position in the degree lists
may have to be changed is at most 132. Figure 2 indicates the relevant vertices.

[Figure 21

Thus the updating of data structures for each execution of Step 3 requires
0( 1) time. I

By Theorem 4, Cases 1 and 2 are exhaustive. Since at most n deletions from
G* can occur in either Step 2 or Step 3, this implementation has a total time of
O(n) for Steps 2 and 3. Finally, the coloring in Step 4 of Algorithm SC can be

e implemented by Lemma 2 in at most time proportional to the number of edges
of G, which is O(n). Thus Algorithm SC provides a S-coloring in linear time.  o

The linear time bound realized in our implementation of Algorithm SC de-
pends critically on the result in Theorem 4 that the vertices @, w* selected to be
merged by contraction in Step 3 have bounded degrees. We now prove Theorem 4.

Proof of Theorem  4. Since any planar graph G has minimum degree at most
five, it is sufficient to show that if G has minimum degree exactly five, then some
vertex of degree five in G is adjacent to at least four vertices of degree at most
eleven. Without loss of generality we may assume that G is maximal  planar.
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Let A be the set of vertices of G of degree five with ?&A = IAl > 1, and let-
B be the set of vertices of G of degree twelve or greater, with nB =IBI.  The
average degree df any planar graph is strictly less than six, so

nA > 6ne. (1)

Assume each vertex of A is adjacent to at least two vertices of B in G. Let
GAB be a bipartite subgraph  of G on the no + ng vertices AU B with 2nA
edges chosen so that each vertex of A is adjacent to exactly two vertices of B.
An embedding of G in the plane provides an embedding of GAB in the plane in
which every face of the bipartite graph GA, has an even number of boundary
edges. We call a face of Gm with four boundary edges a 4-face. Let 1; be
the number of 4-faces of GAB, and let f’ be the number of faces with six or
more boundary edges. Note that if Gm is not connected, then some faces will
have boundary edges from two or more components, yielding face boundaries with
at least eight edges. It is immediate by Euler’s formula that’ an embedding of a
planar graph having p vertices, q edges, and c components must determine r faces
where p-q+t = l+c. For GM we obtain (nA+nB)-2nA+fr+f’  = 1-t-c;
hence

j4 +  j '  > nA - f'B* (2)

Suppose some edge CJ~, bl, for u1 E A, bl E B, is on the boundary of two
4-faces  F1, Fs of G A& Then we must obtain faces as shown in Figure 3, where
~1, 122, us are each adjacent to both bl and bs. Since u1 has degree five in G, one
of the 4-faces,  say F1, must have k 2 2 vertices of the original embedding of G

s in its interior, including at least two vertices adjacent to Ui. G is maximal  planar,
so the induced subgraph F; of G on the union of the k vertices interior to Fl
and {al, bl, ~2, b2} triangulates the interior of Fl. Since any planar triangulation
of the interior of a four cycle having a total of i vertices must have  3i - 7 edges,
l$ has 3(k +4) -7 = 3k+5 edges.

[Figure 3j

Now u1 has degree at least four in F;, and at least two vertices of {bl, ~22, bs}
have degree at least three in F; since the interior of Fl is triangulated by F;.
The k vertices interior to FI each have the same degree in F; as in G, which
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falls between six and eleven, since they are vertices of G not in A or B. The sum
of the vertex degrees of F; thus is at least 6k + 12, which implies that F; has at
least 3k + 6 edges, a contradiction. Hence every edge of GAB can be a boundary
edge of at most one 4-face of GAB.

Since each 4-face of Gm is bounded by four of the 2nA edges of GAB, and
each edge can occur on the boundary of at most one 4-face,

Since each of the 2nA edges of GAB is on the boundary of two faces of GAB,
then also

4j4+6f’ 5 4nA /

so that

6j4 + 6j’ < 5nA. (3)
From (2) and (3) we obtain 5nA > 6(n~ - ng), SO that

6f’B > nA, (4)

a contradiction to (1). We thus conclude that not every vertex of A, i.e., not every
vertex of degree five in G, can be adjacent to at least two vertices of B, i.e., to
two vertices of degree at least twelve in G, which completes the theorem. o

- 4. The Batch Contraction Algorithm.
Our batch contraction planar graph algorithm operates in phases. Each phase

processes a reduced planar graph G*. If G* has a vertex of degree four or less,

-the phase merely deletes such a vertex. If, on the other hand, G’ has minimum
‘degree five, the phase determines an independent set I, with 111 > n/12, such .-
that each vertex in I has degree five or six. The determination of such a set
utilizes the following lemma.

Lemma 7. If an n vertex planar graph G has minimum degree five, then

I{u 1 degree(u) = S}l+ I{u 1 degree(u) = 6}( > n/2.
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PrOOf.  Let ni = I(u 1 degree(u) = i}l. The summation of the vertex degrees
yield twice the number of edges for any graph, and the number of edges in any
n-vertex planar graph with n 2 3 is at most 3n - 6. Therefore

5nS + 6ne + 7(n - n5 ‘- ne) ,< 6n - 12,
,

from which the lemma follows immediately. o

If the reduced planar graph G* has minimum degree five we &color  it in
linear time and then determine the largest set of vertices of degree five or six that
receive the same color. By Lemma 7 at least l/12 of the vertices of G’ are in
such a set. The importance of this process derives from our ability in one phase
to contract the regions around all these vertices of degree five or six, forming a
new reduced planar graph, such that a S-coloring of the reduced graph  will give a
S-coloring of G*, We have previously noted that any vertex of degree flve has two
adjacent vertices that are themselves non-adjacent, and which we may therefore
contract. We need a similar result for vertices of degree six.

Lemma 8. Let u be any vertex of degree six in an embedded plan& graph G.
Then either (i) there are three pairwise non-adjacent vertices ~1, ~2, ug all

adjacent to u, or (ii) there are four vertices ul, u2, tul, w2, all adjacent  to
u, such that ul and u2 are non-adjacent, w1 and w2 are non-adjacent; and ;the
vertices appear in the order  ul, u2, wl, to2 clockwise around u in the embedding.

Proof, Suppose case (i) does not hold, i.e., out of any three vertices adjacent
to u, two are themselves adjacent. Let ~1, ~2, 2~3, 24, 25, zg be the vertices

B adjacent to u, in clockwise order around u. One of the edges (21, z3), (23,25),
(~5, ~1) must be present in G; without loss of generality suppose it is (qz3). See
Figure 4, The vertices 21, 23, u form a cycle with 22 on one side and ~4, ~5, ZC)
on the other side; thus x2 is adjacent neither to 24 nor to 26. Since case (i) does
not hold (~4, ze) must be an edge of G. The vertices 24, ~6, u form a cycle with
z5 on one side and z 1, z2, z3 on the other side; thus 25 is not adjacent to ~1,
and the vertices ul = 22, u2 = 24, wl = 25, w2 = z1 satisfy the requirements
of case (ii). 0

[Figure 41
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We now present our batch contraction planar  graph  S-coloring  algorithm.

Algorithm BC [Batch Contraction S-Coloring].
Given an n vertex planar graph G in adjacency list form, this algorithm

determines a S-coloring of G. In the following description G refers to the original
planar graph and G* refers to a graph that initially has the same structure as C,
but which is reduced by deletions and contractions until it is the null graph. At
all times each vertex of G* corresponds to an independent  set of vertices  of G.

Step 1. [Establish adjacency structure and degree lists for G’.] Create an ad-
jacency list data structure for the graph G’ = G. ‘For each 0 < J’ <- -
?a-- 1, form a list of all vertices of G* of degree j.

Step 2. [Delete minimum degree vertex in G* if degree is at most four.] While
the j-degree lists for 0 < J’ < 4 are not all vacuous, determine u*
to be-the  first vertex in the non-vacuous j-degree list of smallest  j.
Delete u* from G* and add u* to the stack of vertices deleted. Update
t h e  adjacency  list data structure and degree lists for G* to reflect the
deletion of u*.

Step 3. [Determine batch of vertices to be deleted if G* has minimum degree
five.] If G* is now null, go to S.tep  6. Otherwise, determine, a set S
composed of at least l/12 of the vertices of G* where each vertex of S
has degree five or six in G* and all vertices of S are colored the same in
the 6-coloring.

Step 4. [Embed G* in the plane.] Determine an embedding of the planar graph
G* and a clockwise ordering of the vertices adjacent to u* for each vertex
u* of G’.

Step 5. [Batch deletion and contraction.] For each vertex u* in S of degree five,
determine two non-adjacent vertices ~1, u2 both adjacent to u*. For
u* in S of degree six, determine a set of adjacent vertices satisfying
Lemma 8. Now update the adjacency structure and degree lists for G*
to correspond to all of the following operations. Successively delete each
vertex u* of S* from G’ and add u* to the stack of vertices deleted. For
each u* in S which had degree five, contract ul, us into a new vertex. If
u* had degree six and satisfied (i) of Lemma  8, contract  ~1, ~2, u3 into
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a new vertex. If u* satisfied (ii) of Lemma 8, contract ul, us into a new
vertex and zul, w2 into another new vertex. See Figure 5. Note that
since the vertices in S are pairwise non-adjacent, these contractions do
not interfere with each other and can be carried out in one process. The
new reduced graph G* will then have at most S/6 the number of vertices
in G* prior to the batch deletion and contraction process. Return to
Step 2.

Step 6. [Color vertices of G.] While the stack of vertices deleted from G* is
not empty, remove u* from the stack. Traverse the independent set

cw, u2L,  l l * )
uk} of vertices of G corresponding to u* and color all these

vertices with the smallest positive integer value [which must be between
one and five] that has not previously been assigned as the color of any
vertex of G adjacent to any vertex of the set {VI, us,. . . , VI}.

[Figure 51

Utilizing Lemmas 7 and 8, the correctness of Algorithm BC follows in a
straightforward manner annalogous to the proof of Theorem 5 for Algorithm  SC.
We now consider the running time of Algorithm BC.

Theorem  9. Algorithm BC can be implemented to run in O(n) time.

Proof. Steps 1 and 6 are each executed only once and each can readily be
implemented to run in O(n) time [see Lemma 2 and Theorem 51.

Steps 2, 3, 4, and 5 are executed repeatedly, but each time with a graph
* having at most 5/6 the number of vertices in the previous graph. Let n* be the

number of vertices of G* in a given execution of Steps 2 - 5. The deletions of
Step 2 can be implemented in O(d) time. Using Algorithm 6COLOR  and noting
the result of Lemma 7, Step 3 can be implemented in O(n*) time. Step 4 can
be implemented in O(n*) time by procedures available in the literature [HT 741.
Thus our concern is to show that Step 5 can be implemented in linear time.

We carry out Step 5 as follows. We first construct the set of triples T =
{(u, w, u) 1 u E S, u and w are adjacent to u, and u # w}. (Note that 12’1 =
O(n).) Using a two-pass radix sort [K 731, we sort T lexicographically on its first
two components. We then compare the sorted list of T with a lexicographically

16



ordered list of the edges in G*. This comparison allows us to associate with
each triple (u, to, u) a Boolean value B(u, w, u) such that B(u, w, u) is true if and
only if (u, w) is an edge of G*. Another radix sort of T, this time on the third
component, allows us to associate with each vertex u the set of triples (u, w, u) E
T along with the values B(u, w,u). Given this adjacency information, finding
vertices satisfying the contraction conditions requires constant time per vertex of
S. As in Algorithm SC, we use circular lists to represent the independent sets
corresponding to each vertex of G*, Thus each contraction step takes constant.
time. Each vertex u* of the graph G* before contraction corresponds to some
(possibly new) vertex y* of the new graph G* resulting from the contraction.
Given these vertex identifications, the desired adjacency structure and degree lists
for the new reduced graph G* can be constructed in O(n*) time. Note that a
radix sort can be used to order the adjacency lists of each new vertex y’ of G* to
eliminate any duplicate edges created by the contractions. The radix sorts used
to process the triples of T and to eliminate duplicate edges in the reduced graph
G* require only O(n*) time [K 731.

Hence Steps 2, 3, 4, and 5 can be implemented in time proportional to the
number of vertices in G* for each pass through these steps. Since each pass
involves a graph having at most 5/6 as many vertices as the graph in the previous
pass, the t&al time for Steps 2 - 5 is bounded by cn(1 + (S/,6) + (5/6)2 +
l - l ) = (cn)/(l - (5/6)) = 6 cn for some constant c. Hence Algorithm BC can be
implemented to run in O(n) time. o

- 5. Remarks.
There are several interesting features of our two linear-time five-coloring

algorithms that we would like to summarize here.

(i) Our algorithms each exhibit a strong relation between an inductive proof of
a theorem and the design of a recursive algorithm

(ii) The algorithms show that different inductive proofs of the same theorem
may suggest different recursive algorithms with different time bounds.

(iii) The algorithms succinctly contrast the sequential processing and batch pro-
cessing approaches to achieving linear time through problem reductions.
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(iv) Algorithm SC is purely combinatorial requiring no knowledge of any embed-
ding of the planar graph, whereas Algorithm BC requires both combin8tOri81

and topological information.

(v) The essential importance of data structure design is apparent in both al-
gorithms. In particular, note that a trivial question related to one data
structure [e.g. determination of a particular non-adjacency given the ad-
jacency matrix] can be quite complex to handle with satisfactory efficiency
in another data structurk [e.g. determination of non-adjacency given only
the adjacency list structure of the graph].

The recent proof by Appel and Haken [AH 761 that every planar graph can be
4-colored  resolved a famous problem of long standing. Their proof is exceedingly
tedious, but it leads to an O(n2)-time algorithm for 4-coloring a planar graph.
The problem of finding a linear-time $-coloring algorithm remains open.

.
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Figure 1. A planar graph on n = 2k+2 vertices where- - -

every vertex of minimum degree five has the

sun of the degrees on its adjacent vertices

equal to k+20 for any k > 6 .-
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Figure 2. Deletion and contraction step. Vertices in region A will have

their adjacency lists updated. Vertices shown in B have degree

five and need to be placed in appropriate 5 WI - or 5-degree lists.
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Figure3

Figure 4. Degree six vertex for which Case (i) does not hold.
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