The immune system <u>learn to</u> discriminate between self and non-self

Immunological tolerance

- Unresponsive state that is specific for a particular Ag
- Active tolerance mechanisms are required to prevent inflammatory responses to many innocuous airborne and food Ags.
- The most important aspect of tolerance, is self tolerance

Dr. Scott

Self tolerance

- Prevents the body from mounting an immune attack against <u>its own tissues</u>
- a vast diversity of antigen-specific receptors (BCR, TcR) some of which will be self reactive.
- Cells bearing these receptors must be eliminated, either functionally, physically or regulated.

Self tolerance

Tolerance to self is initially induced during embryonic life

- Tolerance occurs in both T and B cells
- Multiple mechanisms of tolerance exist

Loss of self tolerance can lead to autoimmunity

Dr. Scott

Layers of self-tolerance			
Type of tolerance Mechanism		Site of action	
Central tolerance	Deletion Editing	Thymus Bone marrow	
Antigen segregation	Physical barrier to self-antigen access to lymphoid system	Peripheral organs (eg, thyroid, pancreas)	
Peripheral anergy	Cellular inactivation by weak signaling without co-stimulus	Secondary lymphoid tissu	
Regulatory cells	Suppression by cytokines, intercellular signals	Secondary lymphoid tissuand sites of inflammation	
Cytokine deviation	Differentiation to T _H 2 cells, limiting inflammatory cytokine secretion	Secondary lymphoid tissuand sites of inflammation	
Clonal exhaustion	Apoptosis post-activation	Secondary lymphoid tissuand sites of inflammation	

Mechanisms of Immunological Tolerance

Mechanism that eliminates most *autoreactive* T and B cells during lymphocyte development.

Central Tolerance

Negative selection (clonal deletion) is a process that establish the centranl tolerance in the thymus and bone marrow.

· Peripheral tolerance

Autoreactive cells that escape central tolerance are prevented from attacking self cells by the mechanisms of *peripheral tolerance*.

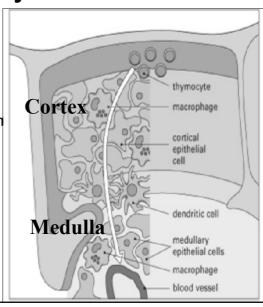
Dr. Scott

Central tolerance

T cell selection is compartmentalized in the thymus

The thymus is made up of lobes:

Subcapsular region

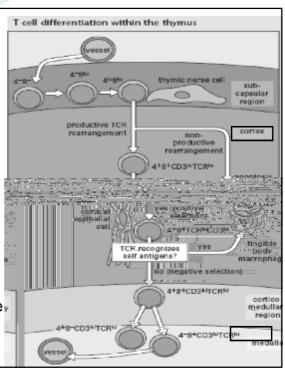

Immature lymphocytes

Cortex

Immature lymphocytes associated with Cortical epithelial cells

Medulla

- Mature lymphocytes
- Medullary epithelial cells
- · Macrophage / dendritic cells

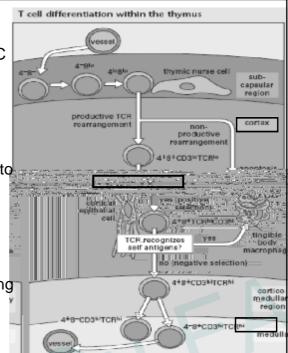


Dr. Scott

Central T-Cell Selection of self-tolerance

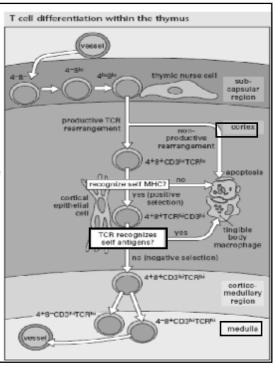
- CD4-CD8- (DN) T-cell progenitors enter the thymic cortex and rearrange their receptors to become CD4+CD8+ (DP) thymocytes.
- Positive and negative selection occurs in the thymus.

- pre-thy TCs are attracted and enter the thymic at the corticomedullary junction.
- Reach the subcapsular region: proliferate, differentiatie.
- acquire CD8 then CD4 at low density.
- Cortex: rearrangement TCR
- Maturing cells move deeper into the cortex, adhere to cortical epithelial cells (elongated, branched: provide a large surface area for contact with thymocytes



Dr. Scott

 TCRs exposed to epithelial MHC molecules: positive selection.
 The first stage of thymic education


 only TCRs with an intermediate affinity for self MHC are allowed to develop further

↑ cells not selected : apoptosis
 CD3, TCR, CD4, and CD8 during
 migration to the deeper cortex.

Negative selection

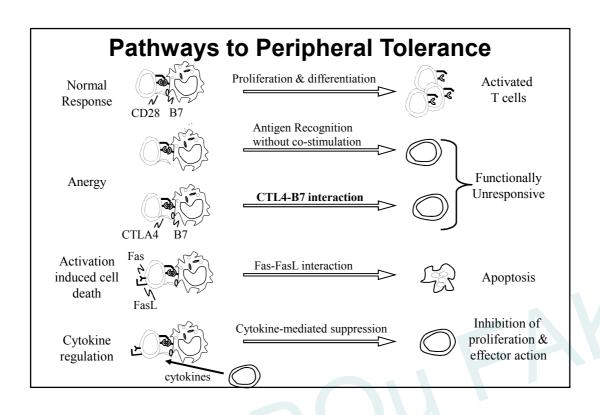
- TCRs self reactivity are deleted through contact with autoAgs presented by:
- medullary thymic epithelial, interdigitating cells, MQ at the corticomedullary junction.
- Cells CD4 or CD8 appear and exit to the periphery via specialized vessels at the corticomedullary junction.

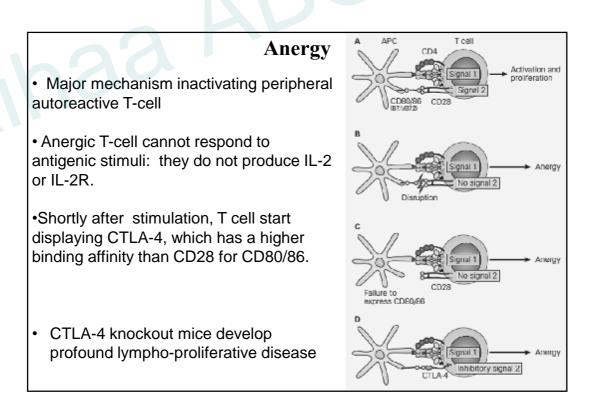
Dr. Scott

- TCR that bind with moderate affinity to self-peptide-MHC complexes on thymic epithelia receive a survival signal (positive selection)
- The AutoAgs are host tissue proteins expressed on thymic epithelia under regulation of the transcription factor autoimmune regulator (AIRE).
- · Many T-cells are eliminated

Autoimmune Polyglandular syndrome type I (APS-1)

- a rare autoimmune disease results from autosomal recessive mutations of the human a autoimmune regulatory (AIRE) gene
- Characterized by at least two of the following major criteria:
- chronic mucocutaneous candidiasis,
- autoimmune adrenocortical insufficiency (Addison's disease),
- hypoparathyroidism.


Dr. Scott


Peripheral tolerance

- □Occurs in the periphery after lymphocyte development
- ☐ Functional silencing or deletion of self-reactive lymphocytes that escaped elimination during the establishment of *central tolerance*.
- ☐ Established by a collection of mechanisms that act outside the thymus and bone marrow

Layers of self-tolerance			
Type of tolerance	Mechanism	Site of action	
Central tolerance	Deletion Editing	Thymus Bone marrow	
Antigen segregation	Physical barrier to self-antigen access to lymphoid system	Peripheral organs (eg, thyroid, pancreas)	
Peripheral anergy	Cellular inactivation by weak signaling without co-stimulus	Secondary lymphoid tissue	
Regulatory cells	Suppression by cytokines, intercellular signals	Secondary lymphoid tissue and sites of inflammation	
Cytokine deviation	Differentiation to T _H 2 cells, limiting inflammatory cytokine secretion	Secondary lymphoid tissue and sites of inflammation	
Clonal exhaustion	Apoptosis post-activation	Secondary lymphoid tissue and sites of inflammation	

Dr. Scott


Dr. Scott

Clinical Signifificance of CTLA-4

- •Rheumatoid arthritis: CTLA-4 is used as a biologic response modifier to treat patients, reducing joint inflammation.
- A fusion protein consisting of CTLA-4 and Ig (abatacept, belatacept) is used clinically in arthritis and after transplantation
- Blocking CTLA-4 using monoclonal antibodies (ipilimumab) in inhibiting tumor tolerance.

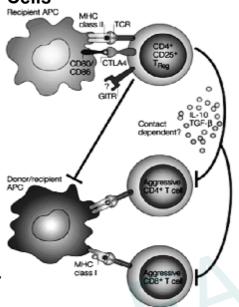
Clonal Deletion

- The best-studied mechanism eliminating activated T-cell clones is activation-induced cell death (AICD)
- Activated T-cells increase their expression of death receptors (Fas) and their ligands
- Ligation of Fas leads to T-cell apoptosis via the caspases :ending the immune response

Dr. Scott

Mutations in Clonal Deletion Pathways

- Rare human diseases, caused by mutations in Fas or FasL. leading to lymphadenopathy and autoantibodies.
- Autoimmune lymphoproliferative syndrome (ALPS)
- IL-2 affects the Fas pathway, can lead to AICD by increasing FasL expression.
- IL-2 helps attenuate immunity by downregulating survival molecules.


Clonal exhaustion

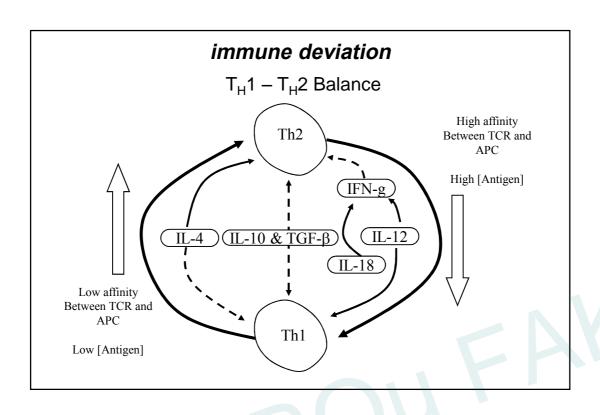
An activated lymphocyte divides so quickly in the face of persistent Ag that its progeny reach the point at which they can no longer divide before memory cells have been generated.

Dr. Scott

Regulatory T Cells

- Inhibit the responses of other immune system cells.
- Inhibition is mediated by intercellular contacts and/or immunosuppressive cytokine secretion.
- •Regulatory T cell populations may be induced or pre-existing.

Nature Reviews | Immunology


immune deviation

Conversion of an adaptive immune response that is harmful (autoimmunity or hypersensitivity) to a less harmful response.

Most often seen in the context of a switch from a Th1 to Th2 response, or vice versa.

Can appear to engender peripheral tolerance to an Antigen

Dr. Scott

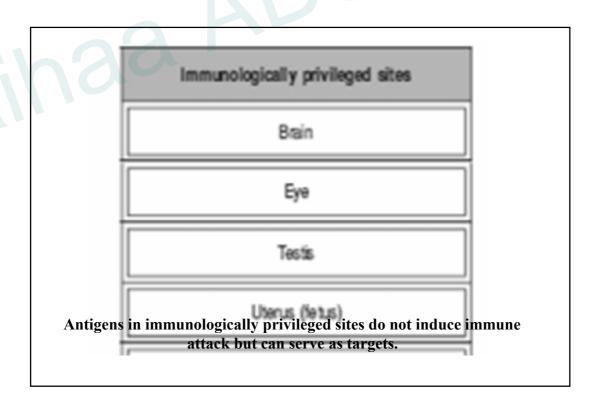
	In1	versus	I nZ	Balance	•
Disease			Th1	٦	Γh

Experimental Cure Progression
Leishmaniasis

Experimental autoimmune Progression Prevention encephalomyelitis

Tuberculosis Cure/Prevention Progression

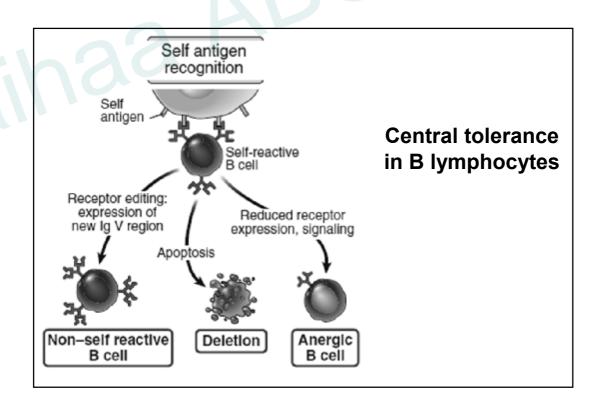
Atopy **Prevention?** Progression


Type 1 Diabetes Progression **Prevention**

Dr. Scott

Immune privileged sites

Anatomical sites in which immune responses are actively or passively suppressed by:

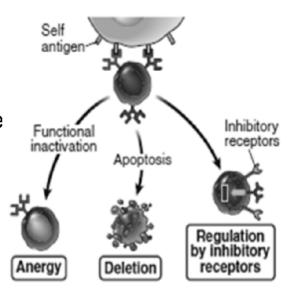

physical barriers, hormone secretion, low DC numbers, immune deviation, immunosuppressive, cytokines, or Fas killing

Dr. Scott

B-cell Tolerance

- During normal B-cell development, a set of processes help induce B-cell central tolerance
- Autoreactive B-cells are not necessarily eliminated during negative selection in the bone marrow
- B-cells that recognise autoantigens are eliminate via apoptosis or become anergic

Dr. Scott


B-cell Peripheral Tolerance

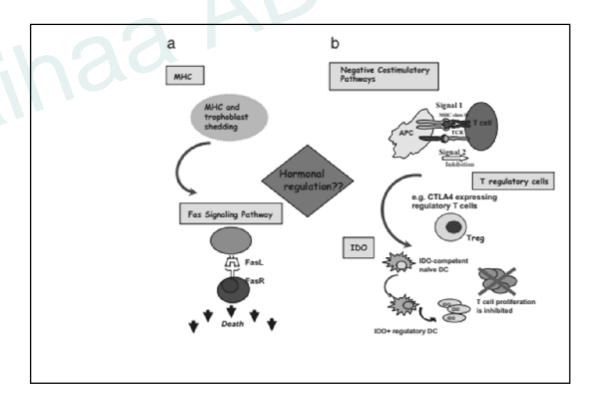
exist for various reasons:

- Imperfect T-cell tolerance: in most autoimmune diseases,
 B-cells are T-cell dependent, requiring help from preactivated cognate autoreactive T-cells.
- T-independent B-cells can be activated by autoAg without Tcell help
- Microbial antigens structurally similar to autoAg can lead Bcells to produce cross-reactive Abs: molecular mimicry
- B-cells hypermutate their receptors on activation, so there is a second chance that they may become self-reactive

Peripheral tolerance in B lymphocyte

 Cells recognize an Ag, do not receive T cell help (helper T cells eliminated or are tolerant), the B cells become anergic

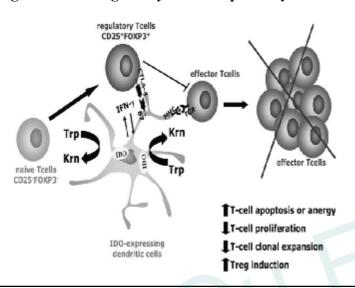
Dr. Scott


Fetal-Maternal Tolerance

- ✓ High levels of progesterone produced by placental cells suppress effector cells
- ✓ IL-10, TGF secretion by placental cells suppress effector cells
- ✓ IL-4, IL-5 secretion by placental cells induces immune deviation to Th2
- ✓ Low level of MHC class I/ class II on placental decreases antigen presentation

Dr. Scott

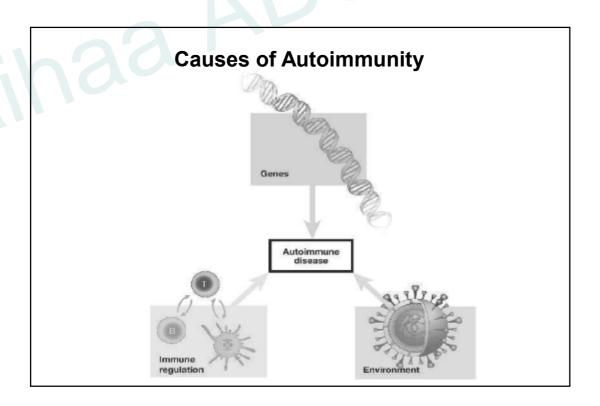
Fetal-Maternal Tolerance


- √ HLA-G expressed by fetal cells inactivates maternal NK cells
- ✓ Decay accelerating factor (DAF) and membrane cofactor protein (MCP) produced by fetal cells inhibit maternal complement activation
- √ FasL expressed by placental cells kills Fas-expressing activated maternal T cells
- ✓ Tryptophan deprivation via indoleamine 2,3-dioxygenase (IDO) production leads to decreased maternal T cell activation and increased Treg induction

Dr. Scott

IDO-mediated tryptophan degradation by DCs

tryptophan degradation along the kynurenine pathway



T regulatory cells

- Promoting fetal survival avoiding the recognition of semiallogeneic tissues by maternal immune system.
- lower number of Treg cells is related to pregnancy complications.
- Reproductive hormones act as modulators of immune reactions during pregnancy: induction of peripheral tolerance expansion of Treg cells.
- •Changes in the cytokines pattern during pregnancy can modulate the number and the function of Treg cells.

Dr. Scott

Autoimmunity

Dr. Scott

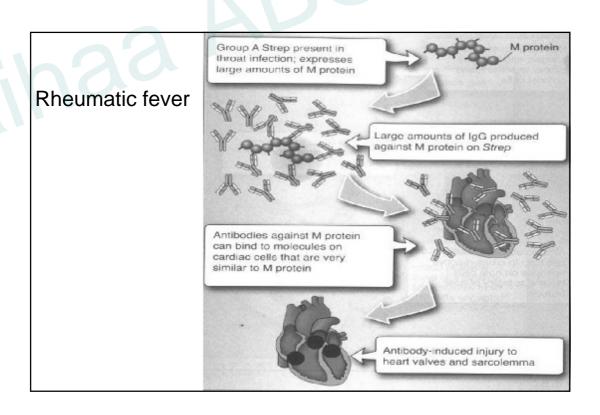
Complex Disease and Genetics

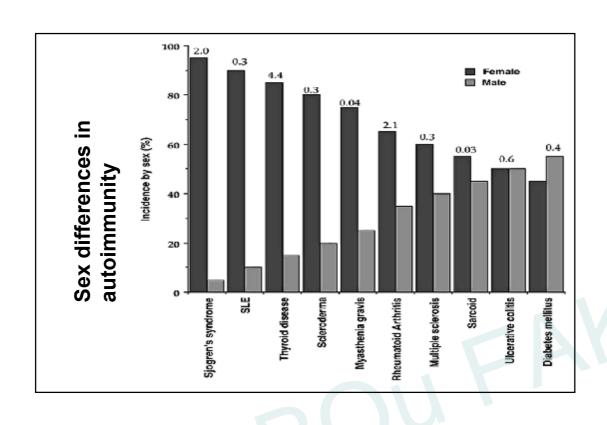
Associations of HLA serotype with susceptibility to autoimmune disease			
Disease	HLA allele	Relative risk	Sex ratio (우:♂)
Ankylosing spondylitis	B27	87.4	0.3
Acute anterior uveitis	B27	10	< 0.5
Goodpasture's syndrome	DR2	15.9	~1
Multiple sclerosis	DR2	4.8	10
Graves' disease	DR3	3.7	4-5

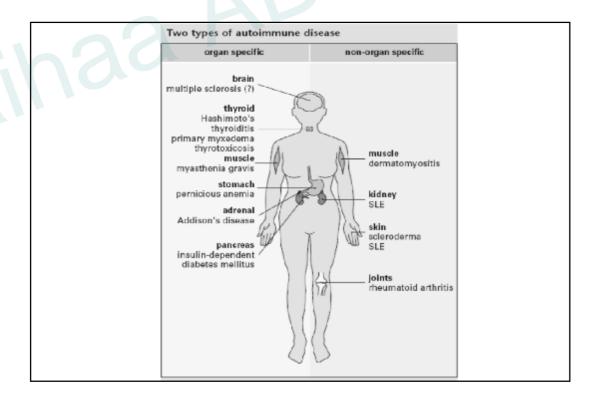
Figure 13-20 part 1 of 2 immunobiology, 6/e. (© Garland Science 2005)

Environment

Pathogens, drugs, hormones, and toxins are just a few ways that the environment can trigger autoimmunity

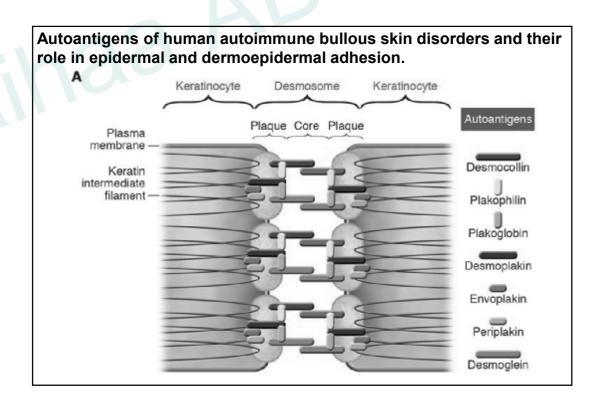




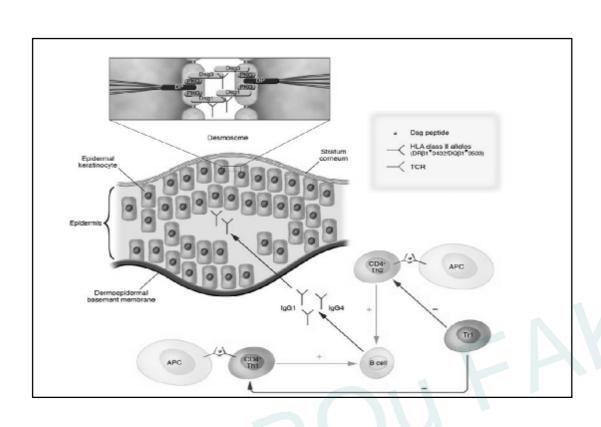

Dr. Scott

	of Molecular Mimicry Between a Pathog	_
Disease	Host antigens	Pathogens
Chagas' cardiomyopathy	Ribosomal protein 23 kD, myosin, B13 protein, Cha-peptide.	Trypanosoma cruzi
Rheumatic fever	Cardiac myosin, tropomyosin laminin, vimentin, actin, keratin, N-acetyl-glucosamine	Streptoccocus pyogenes
Myasthenia gravis	Acetylcholine receptor, neurofilaments	Herpes virus, Hemophilus influenzae
Multiple sclerosis	Myelin basic protein	Corona, measles, mumps, EBV, herpes
Guillain-Barré	Gangliosides, lipo-oligosaccharide	Campylobacter jejuni
Type 1 diabetes mellitus	Islet antigens:GAD 65, proinsulin carboxypeptidase H	Coxsackievirus B, Rotaviruses, Herpe hepatitis C, rhino-, hanta retroviral
Ankylosing spondylitis	HLA-B27, type I, II, IV collagen	Klebsiella pneumoniae, chlamydia
Antiphospholipid syndrome	β ₂ -glycoprotein-I	Hemophilus influenza, Neisseria gonorea, Tetanus toxin, CM
Systemic lupus erythematosus	Ro 60 kD, NMDA, dsDNA	EBVpneumococcal polysaccharide

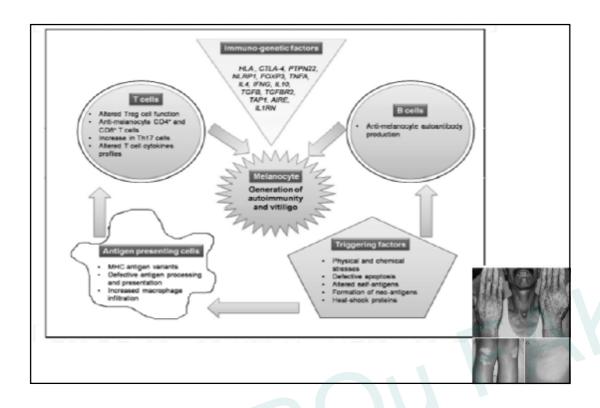
Dr. Scott



Dr. Scott

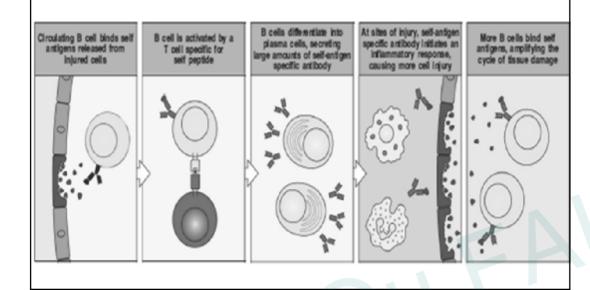

B or T? That is the question

Autoimmunity is hard to classify as strictly a B cell or T cell mediated disease as multiple arms of the immune system are involved



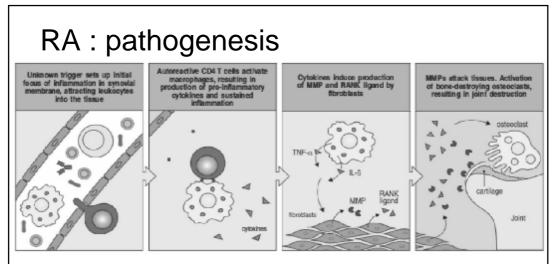
Dr. Scott

Dr. Scott

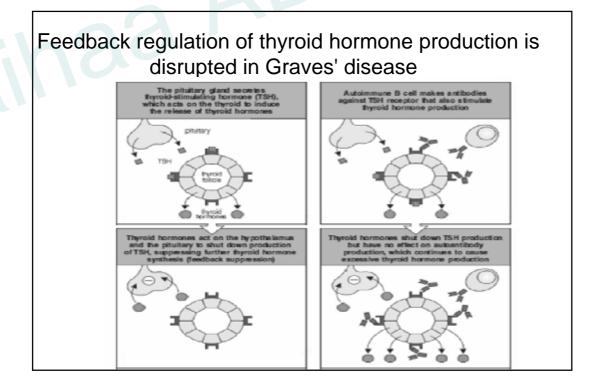

systemic lupus erythematosus (SLE)

- systemic autoimmune disease
- Females 10-times more susceptible than males
- Characterized by a systemic production of anti self antibodies (most commonly associated with anti-DNA antibodies)
- Classical complement pathway deficiencies

Dr. Scott

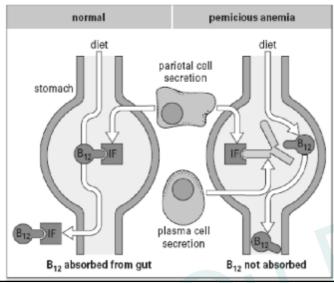

systemic lupus erythematosus (SLE)

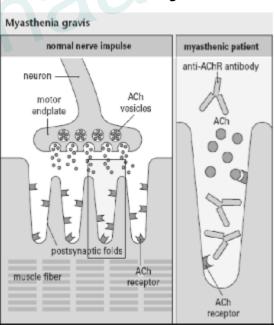
Rheumatoid Arthritis: RA


- Chronic disease, inflammation of the synovium, damages the cartilage, erosion of the bone.
- RA was considered an autoimmune disease driven mainly by B cells producing anti-IgG autABs (RF)
- Association with particular class II HLA-DR genes suggested that T cells were involved in the pathogenesis of this disease.

Dr. Scott

Matrix metalloproteinases (MMPs


The TNF family cytokine RANK ligand, expressed by T cells and fibroblasts in the inflamed joint, is the primary activator of bone-destroying osteoclasts

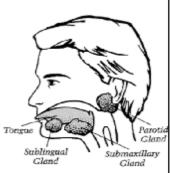

Dr. Scott

In pernicious anemia an autoantibody interferes with the normal uptake of vitamin B_{12}

Intrinsic Factor IF

Disease marked by progressive weakness and loss of muscle control

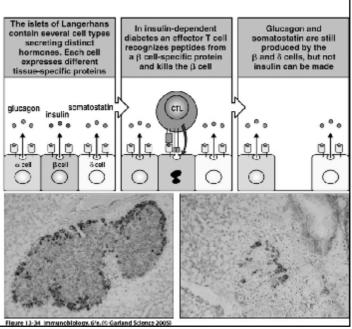
Classified as a "B cell" Disease Autoantibodies against acetylcholine receptors



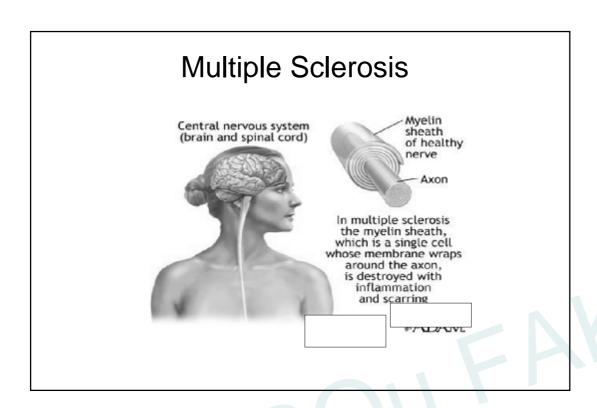
Dr. Scott

Sjogren's Syndrome

- Autoantibodies and autoreactive T cells
- against ribonucleoprotein antigens
- Lymphocyte infiltration of exocrine glands, leading to dry eyes and/or dry mouth other organs, leading to systemic disease

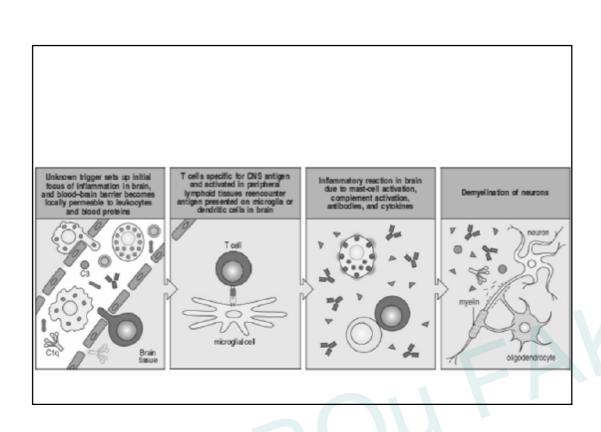


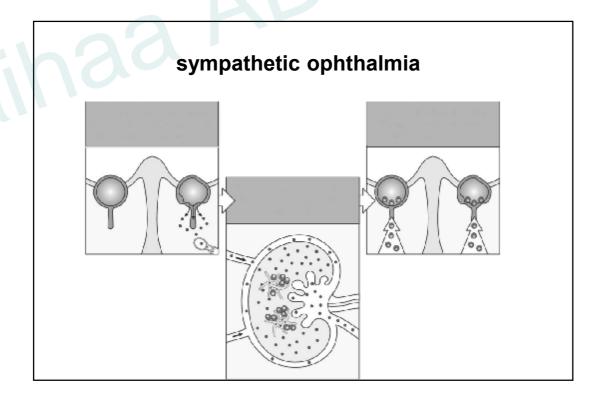
The islets of Langerha contain several cell typ secreting distinct hermone. Each cell


Diabetes

Disease in which the body does not produce or properly use insulin

"T cell" Disease
T cells attack and
destroy pancreatic
beta cells


Dr. Scott



Multiple Sclerosis

- Symptoms my range from numbness in extremeties, through blindness, paralysis, death.
- There are both environmental and genetic components to the disease

Dr. Scott

Dr. Scott

Autoimmune diseases transferred across the placenta to the fetus and newborn infant			
Disease	Autoantibody	Symptom	
Myasthenia gravis	Anti-acetylcholine receptor	Muscle weakness	
Graves' disease	Anti-thyroid-stimulating- hormone (TSH) receptor	Hyperthyroidism	
Thrombocytopenic purpura	Anti-platelet antibodies	Bruising and hemorrhage	
Neonatal lupus rash and/or congenital heart block	Anti-Ro antibodies Anti-La antibodies	Photosensitive rash and/or bradycardia	
Pemphigus vulgaris	Anti-desmoglein-3	Blistering rash	

Dr. Scott