Harper`s Illustrated Biochemistry

Lecturer: Dr.Sahar Fahoum

Biochemistry II First Semester 2017 - 2018

Section IV:

Structure, Function, & Replication of Informational Macromolecules.

Section V:

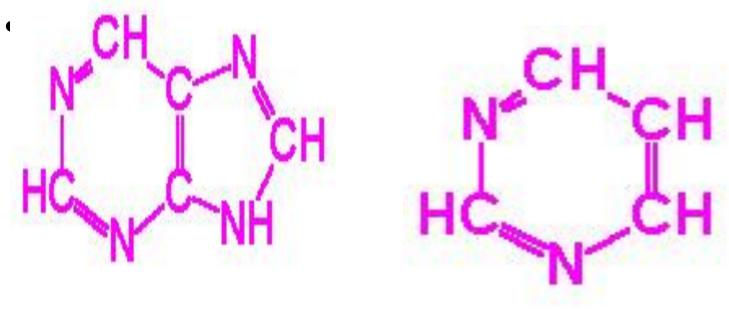
Biochemistry of Extracellular&Intracellular Communication.

Section VI:

Selected Special Topics.

Structure, Function, & Replication of Informational Macromolecule

How it all began


Biomedical Importance

- The main function: Building blocks of nucleic acids.
- Energy Metabolism:
 Example?
- Protein synthesis Example?
- Regulation of enzyme activity Example?
- Signal Transduction Example?

Biomedical importance

- Additional functions:
 - -they form a part of many coEnzymes
 - -Donors of phosphoryl groups(ATP-GTP)
 - -Donors of Sugars (UDP-Glucose)
 - -Donors of Lipids (CDP Acyl Glycerol)
 - -Regulatory nucleotides

Purines, Pyrimidines, Nucleosides & Nucleotides

Purine Pyrimidine

Purines and Pyrimidines

Deffinition:

Nitrogen containing heterocyclic compounds.

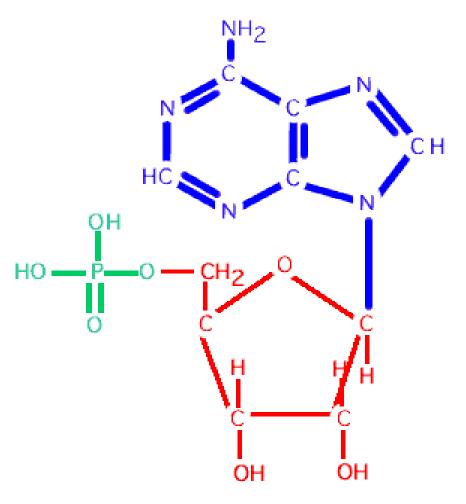
Charachteristics

- -Weak bases
- -Planar structure allow for close stacking (Why?)

Structure of Purines and Pyrimidine

TABLE 32-1 Purine Bases, Ribonucleosides, and Ribonucleotides

Purine or Pyrimidine	X = H	X = Ribose	X = Ribose Phosphate		
NH ₂ N N N N N N N N N N N N N N N N N N N	Adenine	Adenosine	Adenosine monophosphate (AMP)		
H ₂ N N N	Guanine	Guanosine	Guanosine monophosphate (GMP)		
NH ₂	Cytosine	Cytidine	Cytidine monophosphate (CMP)		
H N N N N N N N N N N N N N N N N N N N	Uracil	Uridine	Uridine monophosphate (UMP)		
H CH ₃	Thymine	Thymidine	Thymidine monophosphate (TMP)		


Nucleosides-Nucleotides

Basic Nucleotide Structure

Five Carbon Sugar

Nitrogen Base Phosphate

Example

Adenosine 5' phosphoric acid

Nucleosides

- Deffinition:
- They are derivatives of purines and pyrimidines that have a sugar linked to a ring nitrogen of the bases.
- The sugar is Ribose in Ribonucleosides or Deoxyribose in deoxyRibonucleosides. The sugar carbons are numbered with a prime (`) to diffrentiate the from base numbers.
- The linkage between sugar and base is β
 N Glycosidic bond.

Structure of Nucleosides

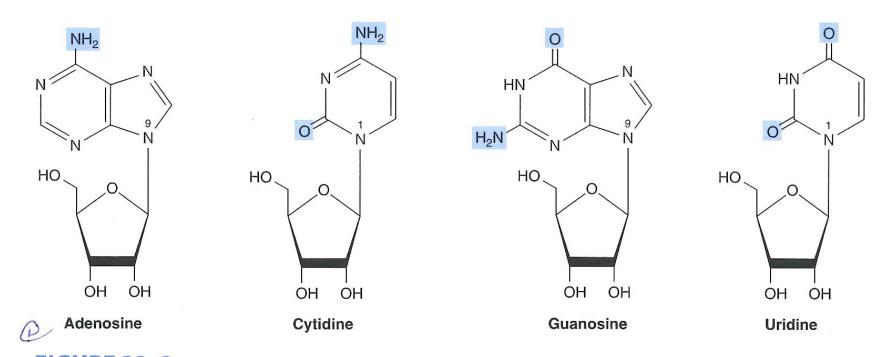
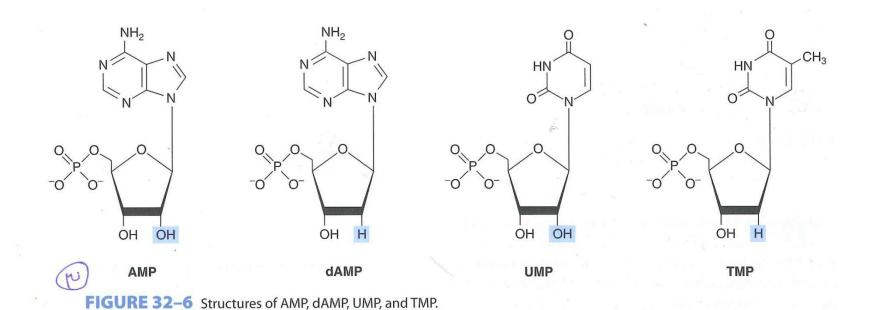
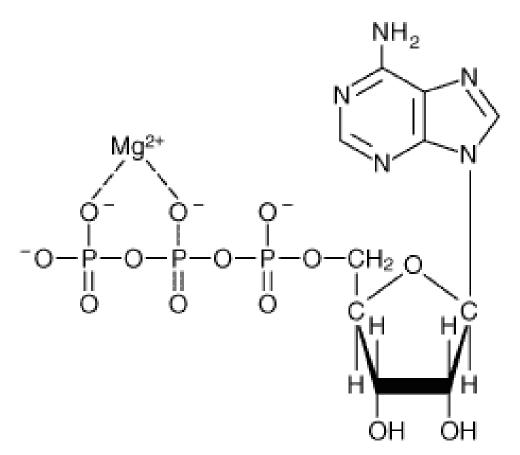


FIGURE 32–3 Ribonucleosides, drawn as the *syn* conformers.

Nucleotides


Deffinition :

Nucleotides are phosphorylated Nucleosides.


The linkage is 3 or a 5 phosphoryl group (mostly the linkage is to a 5 hydroxyl group of the sugar)

According to the number of phosphate groups attached the nucleotide can be a mono or di or Tri nucleotide.

Structure of Nucleotides

Structure of a nucleotidetriphosphate (ATP)

Copyright © 2006 by The McGraw-Hill Companies, Inc. All rights reserved.

Modification of poly nucleotides can generate additional structures

FIGURE 32–7 Four uncommon but naturally occurring pyrimidines and purines.

Intermediates on Catabolism of Nucleotides

FIGURE 32–8 Structures of hypoxanthine, xanthine, and uric acid, drawn as the oxo tautomers.

FIGURE 32–9 Caffeine, a trimethylxanthine. The dimethylxanthines theobromine and theophylline are similar but lack the methyl group at N-1 and at N-7, respectively.

Charachteristics and functions of Nucleotides

- Nucleotides are polyfunctional Acids
- Nucleotides Absorb ultraviolet light.
- Nucleotides serve diverse physiologic Functions.
- Nucleoside Triphosphates have high group transfer potential.
- Synthetic nucleotide analogs are used in Chemotherapy.
- NonHydrolyzable Nucleoside TriPhosphate Analogs serve as research tools.
- DNA & RNA are polunucleotides
- Polynucleotides are Directional Macromolecules.

Regulatory compounds

FIGURE 32–10 cAMP, 3',5'-cyclic AMP, and cGMP, 3', 5'-cyclic GMP.

Components of Enzymes

TABLE 32-2 Many Coenzymes and Related Compounds Are Derivatives of Adenosine Monophosphate

$\mathbf{R} = \begin{bmatrix} \mathbf{O} \\ \mathbf{O} \\ \mathbf{O} \\ \mathbf{O} \end{bmatrix} - \mathbf{CH}_{2}$ $\mathbf{R}'' \mathbf{O} \mathbf{OR}'$ $\mathbf{D-Ribose}$								
Coenzyme	R	R'	R"	n				
Active methionine	Methionine ^a	Н	Н	0				
Amino acid adenylates	Amino acid	Н	Н	1				
Active sulfate	SO ₃ 2-	Н	PO ₃ ²⁻	1				
3',5'-Cyclic AMP		Н	PO ₃ ²⁻	1				
NADb	Nicotinamide	Н	Н	2				
NADP ^b	Nicotinamide	PO ₃ 2-	Н	2				
FAD	Riboflavin	Н	Н	2				
Coenzyme A	Pantothenate	H	PO ₃ ²⁻	2				

^aReplaces phosphoryl group.

^bR is a B vitamin derivative.

Analogs in Chemotherapy

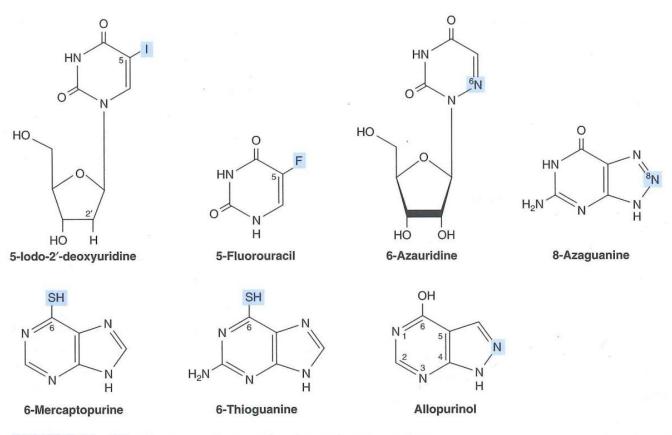


FIGURE 32–13 Selected synthetic pyrimidine and purine analogs.

Synthetic Derivatives as research tools

Parent nucleoside triphosphate

β,γ-Methylene derivative

β,γ-Imino derivative

FIGURE 32–15 Synthetic derivatives of nucleoside triphosphates incapable of undergoing hydrolytic release of the terminal phosphoryl group. (Pu/Py, a purine or pyrimidine base; R, ribose or deoxyribose.) Shown are the parent (hydrolyzable) nucleoside triphosphate (**top**) and the unhydrolyzable β-methylene (**center**) and y-imino derivatives (**bottom**).