

Parenteral Nutrition Formula Calculations and Monitoring Protocols

1 gr Dextrose \longrightarrow 3.4 kcal

1 gr Lipid — 10 kcal

Evaluation of a PN Order

- PN 15% dextrose, 4.5% a.a. 3% lipid @ 100 cc/hour for 24 hours.
- **♦ Total volume = 2400 ml**
- ◆ **Dextrose:** 15g/100 ml * 2400 ml = 360 g
- ◆ 360 g x 3.4 kcal/gram = **1224 kcals**
- ◆ Lipids 3 g/100 ml x 2400 ml = 72 g lipids
- → 72 x 10 kcals/gram = 720 kcals

Evaluation of a PN Order

- ◆ Amino acids: 4.5 grams/100 ml * 2400 ml= 108 grams protein
- $108 \times 4 = 432 \text{ kcals}$

- ◆ <u>1224 + 720 + 432 = 2376 total kcals</u>
- **♦ Lipid is 30% of total calories**
- **♦** Dextrose is 51.5% of total calories
- **♦** Protein is 18% of total calories

Example Calculation 2-in-1

Nutrient Needs / day:

Kcals: 1800. Protein: 88 g. Fluid: 2000 cc/ day
1800 kcal x 30% = 540 kcal from
Lipid (10%):

- 540 kcal/1.1 (kcal/cc) = 491 cc/24 hr =
 20 cc/hr 10% lipid (round to 480 ml)
- ◆ Remaining fluid needs: 2000cc 480cc = 1520 cc

Protein Calculations

Remaining fluid needs: 2000cc - 480cc = 1520cc

Protein: 88 g / 1520 cc x 100 = 5.8% amino acid solution

88 g. x 4 kcal/gm =352 kcals from protein

- ◆ Remaining kcal needs: **1800** − (**528** + **352**)
 - = 920 kcal

Dextrose Concentration

- ◆ Remaining kcal needs: 1800 (528 + 352)
 = 920 kcal
- \bullet 920 kcal/3.4 kcal/g = 270 g dextrose
- ◆ 270 g / 1520 cc x 100 = 17.7% dextrose solution
- ◆ Rate of Amino Acid / Dextrose:
- \bullet 1520 cc / 24hr = 63 cc/hr

TPN recommendation: Suggest two-in-one PN 17.7% dextrose, 5.8% a.a. @ 63 cc/hr with 10% lipids piggyback @ 20 cc/hr

Re-check calculations

```
TPN recommendation: Suggest two-in-one PN 17.7% dextrose, 5.8% a.a. @ 63 cc/hr with 10% lipids piggyback @ 20 cc/hr 63 cc/hr x 24 = 1512 ml
1512 * (.177) = 268 g D X 3.4 kcals = 911 kcals
```

1512 * (0.058) = 88 g a.a. x 4 kcals = 352 20 cc/hr lipids*24 = 480*1.1 kcals/cc = 5281791

Sample Calculation 3-in-1

- Nutrient Needs / day:
 - Kcals: 1800, Protein: 88 g Fluid: 2000 cc
- ◆ Lipid: 1800 kcal x 30% = **540** kcal
 - -540 kcal / 10 kcal per gram = 54 g
 - -54 g / 2000 cc x 100 = 2.7% lipid
- ◆ Protein: 88 g / 2000 cc x 100 =
 4.4% amino acids
- 88 g x 4 = 352 kcals from protein

Sample Calculation 3-in-1(cont)

Dextrose: 908 kcal (1800 – 540 - 352)

- -908/3.4 kcal/g = 267 g dextrose
- 267 g / 2000 cc x 100 =
 13.4% dextrose solution
- Rate of infusion: Amino Acid / Dextrose/Lipid: 2000 cc / 24hr = 83 cc/hr.
- TPN prescription: Suggest TNA 13.4% dextrose, 4.4% amino acids, 2.7% lipids at 83 cc/hour provides 88 g. protein, 1800 kcals, 2000 ml fluid

Acute Inpatient PN Monitoring

		Frequency	
Parameter	Daily	3x/week	Weekly
Glucose	Initially	$\sqrt{}$	
Electrolytes	Initially	$\sqrt{}$	
Phos, Mg, BUN, Cr, Ca		Initially	√
TG			V
Temperature			
Bili, LFTs		Initially	√

Inpatient Monitoring PN

		Frequency	
Parameter	Daily	Weekly	PRN
Body Weight	Initially	$\sqrt{}$	
Nitrogen Balance		Initially	$\sqrt{}$
HGB, HCT		$\sqrt{}$	
Catheter Site	$\sqrt{}$		
Lymphocyte Count	Initially		$\sqrt{}$
Clinical Status			√ √

PRN : Pro - Re - Nata = when necessary

Monitoring: Nutrition Serum Hepatic Proteins

Parameter	<u>Time</u>
Albumin	19 days
Transferrin	9 days
Prealbumin	2 – 3 days
Retinol Binding Protein	~12 hours

Osmolarity Quick Calculation

To calculate solution osmolarity:

- ♦ (A). multiply grams of dextrose per liter by 5
- ♦ (B). multiply grams of protein per liter by 10
- ◆ (C). add A & B
- add 300 to 400 to the answer from "C".
 (Vitamins and minerals contribute about 300 to 400 mOsm/L.)

Is the solution compoundable?

- ◆ TPN is compounded using 10% or 15% amino acids, 70% dextrose, and 20% lipids
- ◆ The TPN prescription must be compoundable using standard base solutions
- ◆ This becomes an issue if the patient is on a fluid restriction

Is the Solution Compoundable?

What is the minimum volume to compound the PN prescription?

Example: 75 g AA

350 g dextrose

50 g lipid

2000 ml fluid restriction

AA: 10 g = 75 g = 750 ml using 10% AA

100 ml X ml

OR divide 75 grams by the % base solution, 75 g/.10

Is the solution compoundable?

Dextrose: 70 g = 350 g x = 500 ml100 ml X ml

Lipid: 20 g = 50g X = 250 ml100 ml x ml

Total volume = 750 ml AA + 500 ml D + 250 ml lipid + 100 ml (for electrolytes/trace) = 1600 ml (minimum volume to compound solution)

Tip: Substrates should easily fit in 1 kcal/ml solutions

Is this solution compoundable?

PN prescription:

AA 125 g

 $\mathbf{D} \qquad \mathbf{350} \; \mathbf{g}$

Lipid 50 g

Fluid restriction 1800 ml/day

Is this solution compoundable?

```
AA: 10 g = 125 g = 1250 ml (125 /. 10)

100 ml  X ml

Dextrose: 70 g = 350 g  x = 500 ml (350/.70)

100 ml  X ml
```

Lipid:
$$20 \text{ g} = 50 \text{g}$$
 $X = 250 \text{ ml} (50/.20)$ 100 ml $x \text{ ml}$

Total volume = 1250 ml AA + 500 ml D + 250 ml lipid + 100 ml (for electrolytes/trace) = 2100 ml (minimum volume to compound solution)

Verdict: not compoundable in 1800 ml.

Action: reduce dextrose content <u>or</u> use 15% AA base solution if available (could deliver protein in 833 ml of 15%)

